qq1990's picture
Upload 6 files
60840ab verified
from functools import cached_property
from importlib.metadata import version
from torch import Tensor
from torch.utils.checkpoint import checkpoint
if version("torch") > "2.3.0":
from torch.nn.attention import SDPBackend, sdpa_kernel
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
# DropPath code is straight from timm
# (https://huggingface.co/spaces/Roll20/pet_score/blame/main/lib/timm/models/layers/drop.py)
def drop_path(
x: Tensor,
drop_prob: float = 0.0,
training: bool = False,
scale_by_keep: bool = True,
) -> Tensor:
"""Drop paths (Stochastic Depth) per sample (when applied in main path of
residual blocks). Taken form timm.
Args:
x (Tensor): Input tensor.
drop_prob (float): Probability of dropping `x`, defaults to 0.
training (bool): Whether model is in in traingin of eval mode,
defaults to False.
scale_by_keep (bool): Whether the output should scaled by
(`1 - drop_prob`), defaults to True.
Returns:
Tensor: Tensor that may have randomly dropped with proability
`drop_path`
"""
if drop_prob == 0.0 or not training:
return x
keep_prob = 1 - drop_prob
shape = (x.shape[0],) + (1,) * (x.ndim - 1)
random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
if keep_prob > 0.0 and scale_by_keep:
random_tensor.div_(keep_prob)
return x * random_tensor
class DropPath(nn.Module):
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of
residual blocks).
"""
def __init__(
self, drop_prob: float | None = None, scale_by_keep: bool = True
) -> None:
super(DropPath, self).__init__()
self.drop_prob = drop_prob
self.scale_by_keep = scale_by_keep
def forward(self, x: Tensor) -> Tensor:
"""Runs drop path on input tensor
Args:
x: input
Returns:
tensor: output after drop_path
"""
return drop_path(x, self.drop_prob, self.training, self.scale_by_keep)
class Mlp(nn.Module):
"""
Multi layer perceptron.
"""
def __init__(
self, features: int, hidden_features: int, dropout: float = 0.0
) -> None:
"""
Args:
features: Input/output dimension.
hidden_features: Hidden dimension.
dropout: Dropout.
"""
super().__init__()
self.net = nn.Sequential(
nn.Linear(features, hidden_features),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_features, features),
nn.Dropout(dropout),
)
def forward(self, x: Tensor) -> Tensor:
"""
Args:
x (Tesnor): Tensor of shape [..., channel]
Returns:
Tenosr: Tensor of same shape as x.
"""
return self.net(x)
class LayerNormPassThrough(nn.LayerNorm):
"""Normalising layer that allows the attention mask to be passed through"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def forward(
self, d: tuple[Tensor, Tensor | None]
) -> tuple[Tensor, Tensor | None]:
"""Forwards function
Args:
d (tuple): tuple of the data tensor and the attention mask
Returns:
output (Tensor): normalised output data
attn_mask (Tensor): the attention mask that was passed in
"""
input, attn_mask = d
output = F.layer_norm(
input, self.normalized_shape, self.weight, self.bias, self.eps
)
return output, attn_mask
class MultiheadAttention(nn.Module):
"""Multihead attention layer for inputs of shape
[..., sequence, features].
"""
def __init__(self, features: int, n_heads: int, dropout: float) -> None:
"""
Args:
features: Number of features for inputs to the layer.
n_heads: Number of attention heads. Should be a factor of features.
(I.e. the layer uses features // n_heads.)
dropout: Dropout.
""" # noqa: E501
super().__init__()
if (features % n_heads) != 0:
raise ValueError(
f"Features '{features}' is not divisible by heads '{n_heads}'."
)
self.features = features
self.n_heads = n_heads
self.dropout = dropout
self.qkv_layer = torch.nn.Linear(features, features * 3, bias=False)
self.w_layer = torch.nn.Linear(features, features, bias=False)
def forward(self, d: tuple[Tensor, Tensor | None]) -> Tensor:
"""
Args:
d (tuple): tuple containing Tensor of shape [..., sequence, features] and the attention mask
Returns:
Tensor: Tensor of shape [..., sequence, features]
""" # noqa: E501
x, attn_mask = d
if not x.shape[-1] == self.features:
raise ValueError(
f"Expecting tensor with last dimension size {self.features}."
)
passenger_dims = x.shape[:-2]
B = passenger_dims.numel()
S = x.shape[-2]
C = x.shape[-1]
x = x.reshape(B, S, C)
# x [B, S, C]
# q, k, v [B, H, S, C/H]
q, k, v = (
self.qkv_layer(x)
.view(B, S, self.n_heads, 3 * (C // self.n_heads))
.transpose(1, 2)
.chunk(chunks=3, dim=3)
)
# Let us enforce either flash (A100+) or memory efficient attention.
if version("torch") > "2.3.0":
with sdpa_kernel(
[SDPBackend.FLASH_ATTENTION, SDPBackend.EFFICIENT_ATTENTION]
):
# x [B, H, S, C//H]
x = F.scaled_dot_product_attention(
q, k, v, attn_mask=attn_mask, dropout_p=self.dropout
)
else:
with torch.backends.cuda.sdp_kernel(
enable_flash=True, enable_math=False, enable_mem_efficient=True
):
# x [B, H, S, C//H]
x = F.scaled_dot_product_attention(
q, k, v, dropout_p=self.dropout
)
# x [B, S, C]
x = x.transpose(1, 2).view(B, S, C)
# x [B, S, C]
x = self.w_layer(x)
# Back to input shape
x = x.view(*passenger_dims, S, self.features)
return x
class Transformer(nn.Module):
"""
Transformer for inputs of shape [..., S, features].
"""
def __init__(
self,
features: int,
mlp_multiplier: int,
n_heads: int,
dropout: float,
drop_path: float,
) -> None:
"""
Args:
features: Number of features for inputs to the layer.
mlp_multiplier: Model uses features*mlp_multiplier hidden units.
n_heads: Number of attention heads. Should be a factor of features.
(I.e. the layer uses features // n_heads.) dropout: Dropout.
drop_path: DropPath.
"""
super().__init__()
self.features = features
self.mlp_multiplier = mlp_multiplier
self.n_heads = n_heads
self.dropout = dropout
self.drop_path = (
DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
)
self.attention = nn.Sequential(
LayerNormPassThrough(features),
MultiheadAttention(features, n_heads, dropout),
)
self.ff = nn.Sequential(
nn.LayerNorm(features),
Mlp(
features=features,
hidden_features=features * mlp_multiplier,
dropout=dropout,
),
)
def forward(self, d: tuple[Tensor, Tensor | None]) -> Tensor:
"""
Args:
x: Tensor of shape [..., sequence, features]
Returns:
Tensor: Tensor of shape [..., sequence, features]
"""
x, attn_mask = d
if not x.shape[-1] == self.features:
raise ValueError(
f"Expecting tensor with last dimension size {self.features}."
)
attention_x = self.attention(d)
x = x + self.drop_path(attention_x)
x = x + self.drop_path(self.ff(x))
return x
class _Shift(nn.Module):
"""Private base class for the shifter. This allows some behaviour to be
easily handled when the shifter isn't used.
"""
def __init__(self):
super().__init__()
self._shifted = False
@torch.no_grad()
def reset(self) -> None:
"""
Resets the bool tracking whether the data is shifted
"""
self._shifted: bool = False
def forward(self, data: Tensor) -> tuple[Tensor, dict[bool, None]]:
return data, {True: None, False: None}
class SWINShift(_Shift):
"""
Handles the shifting of patches similar to how SWIN works. However if we
shift the latitudes then the poles will wrap and potentially that might be
problematic. The possition tokens should handle it but masking is safer.
"""
def __init__(
self,
mu_shape: tuple[int, int],
global_shape: tuple[int, int],
local_shape: tuple[int, int],
patch_shape: tuple[int, int],
n_context_tokens: int = 2,
) -> None:
"""
Args:
mu_shape: the shape to the masking units
global_shape: number of global patches in lat and lon
local_shape: size of the local patches
patch_shape: patch size
n_context_token: number of additional context tokens at start of
_each_ local sequence
"""
super().__init__()
self._mu_shape = ms = mu_shape
self._g_shape = gs = global_shape
self._l_shape = ls = local_shape
self._p_shape = ps = patch_shape
self._lat_patch = (gs[0], ls[0], gs[1], ls[1])
self._n_context_tokens = n_context_tokens
self._g_shift_to = tuple(
int(0.5 * x / p) for x, p in zip(ms, ps, strict=False)
)
self._g_shift_from = tuple(
-int(0.5 * x / p) for x, p in zip(ms, ps, strict=False)
)
# Define the attention masks for the shifted MaxViT.
nglobal = global_shape[0] * global_shape[1]
nlocal = (
local_shape[0] * local_shape[1] + self._n_context_tokens
) # "+ 1" for leadtime
lm = torch.ones((nglobal, 1, nlocal, nlocal), dtype=bool)
mwidth = int(0.5 * local_shape[1]) * local_shape[0]
lm[
: gs[1],
:,
self._n_context_tokens : mwidth + self._n_context_tokens,
self._n_context_tokens : mwidth + self._n_context_tokens,
] = False
self.register_buffer("local_mask", lm)
gm = torch.ones((nlocal, 1, nglobal, nglobal), dtype=bool)
gm[: int(0.5 * ls[1]) * ls[0], :, : gs[1], : gs[1]] = False
self.register_buffer("global_mask", gm)
def _to_grid_global(self, x: Tensor) -> Tensor:
"""
Shuffle and reshape the data from the global/local setting back to the
lat/lon grid setting
Args:
x: the data tensor to be shuffled.
Returns:
x: data in the global/local setting
"""
nbatch, *other = x.shape
y1 = x.view(nbatch, *self._g_shape, *self._l_shape, -1)
y2 = y1.permute(0, 5, 1, 3, 2, 4).contiguous()
s = y2.shape
return y2.view((nbatch, -1, s[2] * s[3], s[4] * s[5]))
def _to_grid_local(self, x: Tensor) -> Tensor:
"""
Shuffle and reshape the data from the local/global setting to the
lat/lon grid setting
Args:
x: the data tensor to be shuffled.
Returns:
x: data in the lat/lon setting.
"""
x = x.transpose(2, 1).contiguous()
return self._to_grid_global(x)
def _from_grid_global(self, x: Tensor) -> Tensor:
"""
Shuffle and reshape the data from the lat/lon grid to the global/local
setting
Args:
x: the data tensor to be shuffled.
Returns:
x: data in the global/local setting
"""
nbatch, *other = x.shape
z1 = x.view(nbatch, -1, *self._lat_patch)
z2 = z1.permute(0, 2, 4, 3, 5, 1).contiguous()
s = z2.shape
return z2.view(nbatch, s[1] * s[2], s[3] * s[4], -1)
def _from_grid_local(self, x: Tensor) -> Tensor:
"""
Shuffle and reshape the data from the lat/lon grid to the local/global
setting
Args:
x: the data tensor to be shuffled.
Returns:
x: data in the local/global setting
"""
x = self._from_grid_global(x)
return x.transpose(2, 1).contiguous()
def _shift(self, x: Tensor) -> Tensor:
"""
Shifts data in the gridded lat/lon setting by half the mask unit shape
Args:
x: data to be shifted
Returns:
x: either the hsifted or unshifted data
"""
shift = self._g_shift_from if self._shifted else self._g_shift_to
x_shifted = torch.roll(x, shift, (-2, -1))
self._shifted = not self._shifted
return x_shifted
def _sep_lt(self, x: Tensor) -> tuple[Tensor, Tensor]:
"""
Seperate off the leadtime from the local patches
Args:
x: data to have leadtime removed from
Returns:
lt: leadtime
x: data without the lead time in the local patch
"""
lt_it = x[:, : self._n_context_tokens, :, :]
x_stripped = x[:, self._n_context_tokens :, :, :]
return lt_it, x_stripped
def forward(self, data: Tensor) -> tuple[Tensor, Tensor]:
"""Shift or unshift the the data depending on whether the data is
already shifted, as defined by self._shifte.
Args:
data: data to be shifted
Returns:
Tensor: shifted data Tensor
"""
lt, x = self._sep_lt(data)
x_grid = self._to_grid_local(x)
x_shifted = self._shift(x_grid)
x_patched = self._from_grid_local(x_shifted)
# Mask has to be repeated based on batch size
n_batch = x_grid.shape[0]
local_rep = [n_batch] + [1] * (self.local_mask.ndim - 1)
global_rep = [n_batch] + [1] * (self.global_mask.ndim - 1)
if self._shifted:
attn_mask = {
True: self.local_mask.repeat(local_rep),
False: self.global_mask.repeat(global_rep),
}
else:
attn_mask = {True: None, False: None}
return torch.cat((lt, x_patched), axis=1), attn_mask
class LocalGlobalLocalBlock(nn.Module):
"""
Applies alternating block and grid attention. Given a parameter n_blocks,
the entire module contains 2*n_blocks+1 transformer blocks. The first,
third, ..., last apply local (block) attention. The second, fourth, ...
global (grid) attention.
This is heavily inspired by
Tu et al. "MaxViT: Multi-Axis Vision Transformer"
(https://arxiv.org/abs/2204.01697).
"""
def __init__(
self,
features: int,
mlp_multiplier: int,
n_heads: int,
dropout: float,
n_blocks: int,
drop_path: float,
shifter: nn.Module | None = None,
checkpoint: list[int] | None = None,
) -> None:
"""
Args:
features: Number of features for inputs to the layer.
mlp_multiplier: Model uses features*mlp_multiplier hidden units.
n_heads: Number of attention heads. Should be a factor of features.
(I.e. the layer uses features // n_heads.)
dropout: Dropout.
drop_path: DropPath.
n_blocks: Number of local-global transformer pairs.
"""
super().__init__()
self.features = features
self.mlp_multiplier = mlp_multiplier
self.n_heads = n_heads
self.dropout = dropout
self.drop_path = drop_path
self.n_blocks = n_blocks
self._checkpoint = checkpoint or []
if not all(0 <= c < 2 * n_blocks + 1 for c in self._checkpoint):
raise ValueError(
"Checkpoints should be 0 <= i < 2*n_blocks+1. "
f"{self._checkpoint=}."
)
self.transformers = nn.ModuleList(
[
Transformer(
features=features,
mlp_multiplier=mlp_multiplier,
n_heads=n_heads,
dropout=dropout,
drop_path=drop_path,
)
for _ in range(2 * n_blocks + 1)
]
)
self.evaluator = [
self._checkpoint_wrapper
if i in self._checkpoint
else lambda m, x: m(x)
for i, _ in enumerate(self.transformers)
]
self.shifter = shifter or _Shift()
@staticmethod
def _checkpoint_wrapper(
model: nn.Module, data: tuple[Tensor, Tensor | None]
) -> Tensor:
return checkpoint(model, data, use_reentrant=False)
def forward(self, x: Tensor) -> Tensor:
"""
Args:
x: Tensor of shape::
[batch, global_sequence, local_sequence, features]
Returns:
Tensor: Tensor of shape::
[batch, global_sequence, local_sequence, features]
"""
if x.shape[-1] != self.features:
raise ValueError(
f"Expecting tensor with last dimension size {self.features}."
)
if x.ndim != 4:
raise ValueError(
f"Expecting tensor with exactly four dimensions. {x.shape=}."
)
self.shifter.reset()
local: bool = True
attn_mask = {True: None, False: None}
transformer_iter = zip(self.evaluator, self.transformers, strict=False)
# First local block
evaluator, transformer = next(transformer_iter)
x = evaluator(transformer, (x, attn_mask[local]))
for evaluator, transformer in transformer_iter:
local = not local
# We are making exactly 2*n_blocks transposes.
# So the output has the same shape as input.
x = x.transpose(1, 2)
x = evaluator(transformer, (x, attn_mask[local]))
if not local:
x, attn_mask = self.shifter(x)
return x
class PatchEmbed(nn.Module):
"""
Patch embedding via 2D convolution.
"""
def __init__(
self, patch_size: int | tuple[int, ...], channels: int, embed_dim: int
):
super().__init__()
self.patch_size = patch_size
self.channels = channels
self.embed_dim = embed_dim
self.proj = nn.Conv2d(
channels,
embed_dim,
kernel_size=patch_size,
stride=patch_size,
bias=True,
)
def forward(self, x: Tensor) -> Tensor:
"""
Args:
x: Tensor of shape [batch, channels, lat, lon].
Returns:
Tensor: Tensor with shape
[batch, embed_dim, lat//patch_size, lon//patch_size]
"""
H, W = x.shape[-2:]
if W % self.patch_size[1] != 0:
raise ValueError(
f"Cannot do patch embedding for tensor of shape {x.size()}"
" with patch size {self.patch_size}. (Dimensions are BSCHW.)"
)
if H % self.patch_size[0] != 0:
raise ValueError(
f"Cannot do patch embedding for tensor of shape {x.size()}"
f" with patch size {self.patch_size}. (Dimensions are BSCHW.)"
)
x = self.proj(x)
return x
class PrithviWxCEncoderDecoder(nn.Module):
"""
Hiera-MaxViT encoder/decoder code.
"""
def __init__(
self,
embed_dim: int,
n_blocks: int,
mlp_multiplier: float,
n_heads: int,
dropout: float,
drop_path: float,
shifter: nn.Module | None = None,
transformer_cp: list[int] | None = None,
) -> None:
"""
Args:
embed_dim: Embedding dimension
n_blocks: Number of local-global transformer pairs.
mlp_multiplier: MLP multiplier for hidden features in feed forward
networks.
n_heads: Number of attention heads.
dropout: Dropout.
drop_path: DropPath.
"""
super().__init__()
self.embed_dim = embed_dim
self.n_blocks = n_blocks
self.mlp_multiplier = mlp_multiplier
self.n_heads = n_heads
self.dropout = dropout
self._transformer_cp = transformer_cp
self.lgl_block = LocalGlobalLocalBlock(
features=embed_dim,
mlp_multiplier=mlp_multiplier,
n_heads=n_heads,
dropout=dropout,
drop_path=drop_path,
n_blocks=n_blocks,
shifter=shifter,
checkpoint=transformer_cp,
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Args:
x: Tensor of shape
[batch, global sequence, local sequence, embed_dim]
Returns:
Tensor of shape
[batch, mask_unit_sequence, local_sequence, embed_dim].
Identical in shape to the input x.
"""
x = self.lgl_block(x)
return x
class PrithviWxC(nn.Module):
"""Encoder-decoder fusing Hiera with MaxViT. See
- Ryali et al. "Hiera: A Hierarchical Vision Transformer without the
Bells-and-Whistles" (https://arxiv.org/abs/2306.00989)
- Tu et al. "MaxViT: Multi-Axis Vision Transformer"
(https://arxiv.org/abs/2204.01697)
"""
def __init__(
self,
in_channels: int,
input_size_time: int,
in_channels_static: int,
input_scalers_mu: Tensor,
input_scalers_sigma: Tensor,
input_scalers_epsilon: float,
static_input_scalers_mu: Tensor,
static_input_scalers_sigma: Tensor,
static_input_scalers_epsilon: float,
output_scalers: Tensor,
n_lats_px: int,
n_lons_px: int,
patch_size_px: tuple[int],
mask_unit_size_px: tuple[int],
mask_ratio_inputs: float,
embed_dim: int,
n_blocks_encoder: int,
n_blocks_decoder: int,
mlp_multiplier: float,
n_heads: int,
dropout: float,
drop_path: float,
parameter_dropout: float,
residual: str,
masking_mode: str,
positional_encoding: str,
decoder_shifting: bool = False,
checkpoint_encoder: list[int] | None = None,
checkpoint_decoder: list[int] | None = None,
) -> None:
"""
Args:
in_channels: Number of input channels.
input_size_time: Number of timestamps in input.
in_channels_static: Number of input channels for static data.
input_scalers_mu: Tensor of size (in_channels,). Used to rescale
input.
input_scalers_sigma: Tensor of size (in_channels,). Used to rescale
input.
input_scalers_epsilon: Float. Used to rescale input.
static_input_scalers_mu: Tensor of size (in_channels_static). Used
to rescale static inputs.
static_input_scalers_sigma: Tensor of size (in_channels_static).
Used to rescale static inputs.
static_input_scalers_epsilon: Float. Used to rescale static inputs.
output_scalers: Tensor of shape (in_channels,). Used to rescale
output.
n_lats_px: Total latitudes in data. In pixels.
n_lons_px: Total longitudes in data. In pixels.
patch_size_px: Patch size for tokenization. In pixels lat/lon.
mask_unit_size_px: Size of each mask unit. In pixels lat/lon.
mask_ratio_inputs: Masking ratio for inputs. 0 to 1.
embed_dim: Embedding dimension
n_blocks_encoder: Number of local-global transformer pairs in
encoder.
n_blocks_decoder: Number of local-global transformer pairs in
decoder.
mlp_multiplier: MLP multiplier for hidden features in feed forward
networks.
n_heads: Number of attention heads.
dropout: Dropout.
drop_path: DropPath.
parameter_dropout: Dropout applied to parameters.
residual: Indicates whether and how model should work as residual
model. Accepted values are 'climate', 'temporal' and 'none'
positional_encoding: possible values are
['absolute' (default), 'fourier'].
'absolute' lat lon encoded in 3 dimensions using sine and
cosine
'fourier' lat/lon to be encoded using various frequencies
masking_mode: String ['local', 'global', 'both'] that controls the
type of masking used.
checkpoint_encoder: List of integers controlling if gradient
checkpointing is used on encoder.
Format: [] for no gradient checkpointing. [3, 7] for
checkpointing after 4th and 8th layer etc.
checkpoint_decoder: List of integers controlling if gradient
checkpointing is used on decoder.
Format: See `checkpoint_encoder`.
masking_mode: The type of masking to use
{'global', 'local', 'both'}
decoder_shifting: Whether to use swin shifting in the decoder.
"""
super().__init__()
self.in_channels = in_channels
self.input_size_time = input_size_time
self.in_channels_static = in_channels_static
self.n_lats_px = n_lats_px
self.n_lons_px = n_lons_px
self.patch_size_px = patch_size_px
self.mask_unit_size_px = mask_unit_size_px
self.mask_ratio_inputs = mask_ratio_inputs
self.embed_dim = embed_dim
self.n_blocks_encoder = n_blocks_encoder
self.n_blocks_decoder = n_blocks_decoder
self.mlp_multiplier = mlp_multiplier
self.n_heads = n_heads
self.dropout = dropout
self.drop_path = drop_path
self.residual = residual
self._decoder_shift = decoder_shifting
self.positional_encoding = positional_encoding
self._checkpoint_encoder = checkpoint_encoder
self._checkpoint_decoder = checkpoint_decoder
assert self.n_lats_px % self.mask_unit_size_px[0] == 0
assert self.n_lons_px % self.mask_unit_size_px[1] == 0
assert self.mask_unit_size_px[0] % self.patch_size_px[0] == 0
assert self.mask_unit_size_px[1] % self.patch_size_px[1] == 0
if self.patch_size_px[0] != self.patch_size_px[1]:
raise NotImplementedError(
"Current pixel shuffle symmetric patches."
)
self.local_shape_mu = (
self.mask_unit_size_px[0] // self.patch_size_px[0],
self.mask_unit_size_px[1] // self.patch_size_px[1],
)
self.global_shape_mu = (
self.n_lats_px // self.mask_unit_size_px[0],
self.n_lons_px // self.mask_unit_size_px[1],
)
assert input_scalers_mu.shape == (in_channels,)
assert input_scalers_sigma.shape == (in_channels,)
assert output_scalers.shape == (in_channels,)
if self.positional_encoding != "fourier":
assert static_input_scalers_mu.shape == (in_channels_static,)
assert static_input_scalers_sigma.shape == (in_channels_static,)
# Input shape [batch, time, parameter, lat, lon]
self.input_scalers_epsilon = input_scalers_epsilon
self.register_buffer(
"input_scalers_mu", input_scalers_mu.reshape(1, 1, -1, 1, 1)
)
self.register_buffer(
"input_scalers_sigma", input_scalers_sigma.reshape(1, 1, -1, 1, 1)
)
# Static inputs shape [batch, parameter, lat, lon]
self.static_input_scalers_epsilon = static_input_scalers_epsilon
self.register_buffer(
"static_input_scalers_mu",
static_input_scalers_mu.reshape(1, -1, 1, 1),
)
self.register_buffer(
"static_input_scalers_sigma",
static_input_scalers_sigma.reshape(1, -1, 1, 1),
)
# Output shape [batch, parameter, lat, lon]
self.register_buffer(
"output_scalers", output_scalers.reshape(1, -1, 1, 1)
)
self.parameter_dropout = nn.Dropout2d(p=parameter_dropout)
self.patch_embedding = PatchEmbed(
patch_size=patch_size_px,
channels=in_channels * input_size_time,
embed_dim=embed_dim,
)
if self.residual == "climate":
self.patch_embedding_static = PatchEmbed(
patch_size=patch_size_px,
channels=in_channels + in_channels_static,
embed_dim=embed_dim,
)
else:
self.patch_embedding_static = PatchEmbed(
patch_size=patch_size_px,
channels=in_channels_static,
embed_dim=embed_dim,
)
self.input_time_embedding = nn.Linear(1, embed_dim // 4, bias=True)
self.lead_time_embedding = nn.Linear(1, embed_dim // 4, bias=True)
self.mask_token = nn.Parameter(torch.randn(1, 1, 1, self.embed_dim))
self._nglobal_mu = np.prod(self.global_shape_mu)
self._global_idx = torch.arange(self._nglobal_mu)
self._nlocal_mu = np.prod(self.local_shape_mu)
self._local_idx = torch.arange(self._nlocal_mu)
self.encoder = PrithviWxCEncoderDecoder(
embed_dim=embed_dim,
n_blocks=n_blocks_encoder,
mlp_multiplier=mlp_multiplier,
n_heads=n_heads,
dropout=dropout,
drop_path=drop_path,
transformer_cp=checkpoint_encoder,
)
if n_blocks_decoder != 0:
if self._decoder_shift:
self.decoder_shifter = d_shifter = SWINShift(
self.mask_unit_size_px,
self.global_shape_mu,
self.local_shape_mu,
self.patch_size_px,
n_context_tokens=0,
)
else:
self.decoder_shifter = d_shifter = None
self.decoder = PrithviWxCEncoderDecoder(
embed_dim=embed_dim,
n_blocks=n_blocks_decoder,
mlp_multiplier=mlp_multiplier,
n_heads=n_heads,
dropout=dropout,
drop_path=0.0,
shifter=d_shifter,
transformer_cp=checkpoint_decoder,
)
self.unembed = nn.Linear(
self.embed_dim,
self.in_channels
* self.patch_size_px[0]
* self.patch_size_px[1],
bias=True,
)
self.masking_mode = masking_mode.lower()
match self.masking_mode:
case "local":
self.generate_mask = self._gen_mask_local
case "global":
self.generate_mask = self._gen_mask_global
case "both":
self._mask_both_local: bool = True
self.generate_mask = self._gen_mask_both
case _:
raise ValueError(
f"Masking mode '{masking_mode}' not supported"
)
def swap_masking(self) -> None:
self._mask_both_local = not self._mask_both_local
@cached_property
def n_masked_global(self):
return int(self.mask_ratio_inputs * np.prod(self.global_shape_mu))
@cached_property
def n_masked_local(self):
return int(self.mask_ratio_inputs * np.prod(self.local_shape_mu))
@staticmethod
def _shuffle_along_axis(a, axis):
idx = torch.argsort(input=torch.rand(*a.shape), dim=axis)
return torch.gather(a, dim=axis, index=idx)
def _gen_mask_local(self, sizes: tuple[int]) -> tuple[Tensor]:
"""
Args:
batch_size: Number of elements in batch
Returns:
Tuple of torch tensors. [indices masked, indices unmasked].
Each of these is a tensor of shape (batch, global sequene)
"""
# Identify which indices (values) should be masked
maskable_indices = self._local_idx.view(1, -1).expand(*sizes[:2], -1)
maskable_indices = self._shuffle_along_axis(maskable_indices, 2)
indices_masked = maskable_indices[:, :, : self.n_masked_local]
indices_unmasked = maskable_indices[:, :, self.n_masked_local :]
return indices_masked, indices_unmasked
def _gen_mask_global(self, sizes: tuple[int]) -> tuple[Tensor]:
"""
Args:
batch_size: Number of elements in batch
Returns:
Tuple of torch tensors. [indices masked, indices unmasked].
Each of these is a tensor of shape (batch, global sequene)
"""
# Identify which indices (values) should be masked
maskable_indices = self._global_idx.view(1, -1).expand(*sizes[:1], -1)
maskable_indices = self._shuffle_along_axis(maskable_indices, 1)
indices_masked = maskable_indices[:, : self.n_masked_global]
indices_unmasked = maskable_indices[:, self.n_masked_global :]
return indices_masked, indices_unmasked
def _gen_mask_both(self, sizes: tuple[int]) -> tuple[Tensor]:
if self._mask_both_local:
return self._gen_mask_local(sizes)
else:
return self._gen_mask_global(sizes)
@staticmethod
def reconstruct_batch(
idx_masked: Tensor,
idx_unmasked: Tensor,
data_masked: Tensor,
data_unmasked: Tensor,
) -> Tensor:
"""Reconstructs a tensor along the mask unit dimension. Batched
version.
Args:
idx_masked: Tensor of shape `batch, mask unit sequence`.
idx_unmasked: Tensor of shape `batch, mask unit sequence`.
data_masked: Tensor of shape `batch, mask unit sequence, ...`.
Should have same size along mask unit sequence dimension as
idx_masked. Dimensions beyond the first two, marked here as ...
will typically be `local_sequence, channel` or
`channel, lat, lon`. These dimensions should agree with
data_unmasked.
data_unmasked: Tensor of shape `batch, mask unit sequence, ...`.
Should have same size along mask unit sequence dimension as
idx_unmasked. Dimensions beyond the first two, marked here as
... will typically be `local_sequence, channel` or `channel,
lat, lon`. These dimensions should agree with data_masked.
Returns:
Tensor: Tensor of same shape as inputs data_masked and
data_unmasked. I.e. `batch, mask unit sequence, ...`. Index for
the total data composed of the masked and the unmasked part.
"""
dim: int = idx_masked.ndim
idx_total = torch.argsort(
torch.cat([idx_masked, idx_unmasked], dim=-1), dim=-1
)
idx_total = idx_total.view(
*idx_total.shape, *[1] * (data_unmasked.ndim - dim)
)
idx_total = idx_total.expand(
*idx_total.shape[:dim], *data_unmasked.shape[dim:]
)
data = torch.cat([data_masked, data_unmasked], dim=dim - 1)
data = torch.gather(data, dim=dim - 1, index=idx_total)
return data, idx_total
def fourier_pos_encoding(self, x_static: Tensor) -> Tensor:
"""
Args
x_static: B x C x H x W. first two channels are lat, and lon
Returns
Tensor: Tensor of shape B x E x H x W where E is the embedding
dimension.
"""
# B x C x H x W -> B x 1 x H/P x W/P
latitudes_patch = F.avg_pool2d(
x_static[:, [0]],
kernel_size=self.patch_size_px,
stride=self.patch_size_px,
)
longitudes_patch = F.avg_pool2d(
x_static[:, [1]],
kernel_size=self.patch_size_px,
stride=self.patch_size_px,
)
modes = (
torch.arange(self.embed_dim // 4, device=x_static.device).view(
1, -1, 1, 1
)
+ 1.0
)
pos_encoding = torch.cat(
(
torch.sin(latitudes_patch * modes),
torch.sin(longitudes_patch * modes),
torch.cos(latitudes_patch * modes),
torch.cos(longitudes_patch * modes),
),
axis=1,
)
return pos_encoding # B x E x H/P x W/P
def time_encoding(self, input_time, lead_time):
"""
Args:
input_time: Tensor of shape [batch].
lead_time: Tensor of shape [batch].
Returns:
Tensor: Tensor of shape [batch, embed_dim, 1, 1]
"""
input_time = self.input_time_embedding(input_time.view(-1, 1, 1, 1))
lead_time = self.lead_time_embedding(lead_time.view(-1, 1, 1, 1))
time_encoding = torch.cat(
(
torch.cos(input_time),
torch.cos(lead_time),
torch.sin(input_time),
torch.sin(lead_time),
),
axis=3,
)
return time_encoding
def to_patching(self, x: Tensor) -> Tensor:
"""Transform data from lat/lon space to two axis patching
Args: ->
x: Tesnor in lat/lon space (N, C, Nlat//P_0, Nlon//P_1)
Returns:
Tensor in patch space (N, G, L, C)
"""
n_batch = x.shape[0]
x = x.view(
n_batch,
-1,
self.global_shape_mu[0],
self.local_shape_mu[0],
self.global_shape_mu[1],
self.local_shape_mu[1],
)
x = x.permute(0, 2, 4, 3, 5, 1).contiguous()
s = x.shape
return x.view(n_batch, s[1] * s[2], s[3] * s[4], -1)
def from_patching(self, x: Tensor) -> Tensor:
"""Transform data from two axis patching to lat/lon space
Args:
x: Tensor in patch space with shape (N, G, L, C*P_0*P_1)
Returns:
Tensor: Tensor in lat/lon space
(N, C*P_0*P_1, Nlat//P_0, Nlon // P_1)
"""
n_batch = x.shape[0]
x = x.view(
n_batch,
self.global_shape_mu[0],
self.global_shape_mu[1],
self.local_shape_mu[0],
self.local_shape_mu[1],
-1,
)
x = x.permute(0, 5, 1, 3, 2, 4).contiguous()
s = x.shape
return x.view(n_batch, -1, s[2] * s[3], s[4] * s[5])
def forward(self, batch: dict[str, torch.Tensor]) -> torch.Tensor:
"""
Args:
batch: Dictionary the following keys::
'x': Tensor of shape [batch, time, parameter, lat, lon]
'y': Tensor of shape [batch, parameter, lat, lon]
'static': Tensor of shape [batch, channel_static, lat, lon]
'climate': Optional tensor of shape [batch, parameter, lat, lon]
'input_time': Tensor of shape [batch]. Or none.
'lead_time': Tensor of shape [batch]. Or none.
Returns:
Tensor: Tensor of shape [batch, parameter, lat, lon].
""" # noqa: E501
x_rescaled = (batch["x"] - self.input_scalers_mu) / (
self.input_scalers_sigma + self.input_scalers_epsilon
)
batch_size = x_rescaled.shape[0]
if self.positional_encoding == "fourier":
x_static_pos = self.fourier_pos_encoding(batch["static"])
x_static = (
batch["static"][:, 2:] - self.static_input_scalers_mu[:, 3:]
) / (
self.static_input_scalers_sigma[:, 3:]
+ self.static_input_scalers_epsilon
)
else:
x_static = (batch["static"] - self.static_input_scalers_mu) / (
self.static_input_scalers_sigma
+ self.static_input_scalers_epsilon
)
if self.residual == "temporal":
# We create a residual of same shape as y
index = torch.where(
batch["lead_time"] > 0, batch["x"].shape[1] - 1, 0
)
index = index.view(-1, 1, 1, 1, 1)
index = index.expand(batch_size, 1, *batch["x"].shape[2:])
x_hat = torch.gather(batch["x"], dim=1, index=index)
x_hat = x_hat.squeeze(1)
elif self.residual == "climate":
climate_scaled = (
batch["climate"] - self.input_scalers_mu.view(1, -1, 1, 1)
) / (
self.input_scalers_sigma.view(1, -1, 1, 1)
+ self.input_scalers_epsilon
)
# [batch, time, parameter, lat, lon]
# -> [batch, time x parameter, lat, lon]
x_rescaled = x_rescaled.flatten(1, 2)
# Parameter dropout
x_rescaled = self.parameter_dropout(x_rescaled)
x_embedded = self.patch_embedding(x_rescaled)
if self.residual == "climate":
static_embedded = self.patch_embedding_static(
torch.cat((x_static, climate_scaled), dim=1)
)
else:
static_embedded = self.patch_embedding_static(x_static)
if self.positional_encoding == "fourier":
static_embedded += x_static_pos
x_embedded = self.to_patching(x_embedded)
static_embedded = self.to_patching(static_embedded)
time_encoding = self.time_encoding(
batch["input_time"], batch["lead_time"]
)
tokens = x_embedded + static_embedded + time_encoding
# Now we generate masks based on masking_mode
indices_masked, indices_unmasked = self.generate_mask(
(batch_size, self._nglobal_mu)
)
indices_masked = indices_masked.to(device=tokens.device)
indices_unmasked = indices_unmasked.to(device=tokens.device)
maskdim: int = indices_masked.ndim
# Unmasking
unmask_view = (*indices_unmasked.shape, *[1] * (tokens.ndim - maskdim))
unmasked = torch.gather(
tokens,
dim=maskdim - 1,
index=indices_unmasked.view(*unmask_view).expand(
*indices_unmasked.shape, *tokens.shape[maskdim:]
),
)
# Encoder
x_encoded = self.encoder(unmasked)
# Generate and position encode the mask tokens
# [1, 1, 1, embed_dim]
# -> [batch, global_seq_masked, local seq, embed_dim]
mask_view = (*indices_masked.shape, *[1] * (tokens.ndim - maskdim))
masking = self.mask_token.repeat(*static_embedded.shape[:3], 1)
masked = masking + static_embedded
masked = torch.gather(
masked,
dim=maskdim - 1,
index=indices_masked.view(*mask_view).expand(
*indices_masked.shape, *tokens.shape[maskdim:]
),
)
recon, _ = self.reconstruct_batch(
indices_masked, indices_unmasked, masked, x_encoded
)
x_decoded = self.decoder(recon)
# Output: [batch, global sequence, local sequence,
# in_channels * patch_size[0] * patch_size[1]]
x_unembed = self.unembed(x_decoded)
# Reshape to [batch, global_lat, global_lon, local_lat, local_lon,
# in_channels * patch_size[0] * patch_size[1]]
x_out = self.from_patching(x_unembed)
# Pixel shuffle to [batch, in_channels, lat, lon]
x_out = F.pixel_shuffle(x_out, self.patch_size_px[0])
if self.residual == "temporal":
x_out = self.output_scalers * x_out + x_hat
elif self.residual == "climate":
x_out = self.output_scalers * x_out + batch["climate"]
elif self.residual == "none":
x_out = (
self.output_scalers * x_out
+ self.input_scalers_mu.reshape(1, -1, 1, 1)
)
return x_out