Content_safety / app.py
Dileep7729's picture
Update app.py
4d41f6e verified
raw
history blame
4.13 kB
import gradio as gr
from transformers import CLIPModel, CLIPProcessor
from PIL import Image
import requests
# Step 1: Load Fine-Tuned Model from Hugging Face Model Hub
model_name = "quadranttechnologies/retail-content-safety-clip-finetuned"
print("Initializing the application...")
try:
print("Loading the model from Hugging Face Model Hub...")
model = CLIPModel.from_pretrained(model_name, trust_remote_code=True)
processor = CLIPProcessor.from_pretrained(model_name)
print("Model and processor loaded successfully.")
except Exception as e:
print(f"Error loading the model or processor: {e}")
raise RuntimeError(f"Failed to load model: {e}")
# Step 2: Minimal Test Case to Verify Model and Processor
try:
print("Running a minimal test case with the model...")
# Test Image URL
url = "https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png"
image = Image.open(requests.get(url, stream=True).raw)
# Define test categories
test_categories = ["safe", "unsafe"]
# Process the image
test_inputs = processor(text=test_categories, images=image, return_tensors="pt", padding=True)
print(f"Test inputs processed: {test_inputs}")
# Perform inference
test_outputs = model(**test_inputs)
print(f"Test outputs: {test_outputs}")
# Check probabilities
test_logits = test_outputs.logits_per_image
test_probs = test_logits.softmax(dim=1)
print(f"Test probabilities: {test_probs}")
except Exception as e:
print(f"Error during the minimal test case: {e}")
raise RuntimeError(f"Test case failed: {e}")
# Step 3: Define the Inference Function
def classify_image(image):
"""
Classify an image as 'safe' or 'unsafe' and return probabilities.
Args:
image (PIL.Image.Image): Uploaded image.
Returns:
str: Predicted category.
dict: Probabilities for "safe" and "unsafe".
"""
try:
print("Starting image classification...")
# Check if the image is valid
if image is None:
raise ValueError("No image provided. Please upload a valid image.")
if not hasattr(image, "convert"):
raise ValueError("Uploaded file is not a valid image format.")
# Define main categories
categories = ["safe", "unsafe"]
print(f"Categories: {categories}")
# Process the image
print("Processing the image with the processor...")
inputs = processor(text=categories, images=image, return_tensors="pt", padding=True)
print(f"Processed inputs: {inputs}")
# Perform inference
print("Running model inference...")
outputs = model(**inputs)
print(f"Model outputs: {outputs}")
# Calculate probabilities
logits_per_image = outputs.logits_per_image
probs = logits_per_image.softmax(dim=1)
print(f"Probabilities: {probs}")
# Extract probabilities for each category
safe_prob = probs[0][0].item() * 100
unsafe_prob = probs[0][1].item() * 100
# Determine the predicted category
predicted_category = "safe" if safe_prob > unsafe_prob else "unsafe"
print(f"Predicted category: {predicted_category}")
# Return the predicted category and probabilities
return predicted_category, {"safe": f"{safe_prob:.2f}%", "unsafe": f"{unsafe_prob:.2f}%"}
except Exception as e:
print(f"Error during classification: {e}")
return f"Error: {str(e)}", {}
# Step 4: Set Up Gradio Interface
iface = gr.Interface(
fn=classify_image,
inputs=gr.Image(type="pil"),
outputs=[
gr.Textbox(label="Predicted Category"), # Display the predicted category prominently
gr.Label(label="Probabilities"), # Display probabilities with a progress bar
],
title="Content Safety Classification",
description="Upload an image to classify it as 'safe' or 'unsafe' with corresponding probabilities.",
)
# Step 5: Launch Gradio Interface
if __name__ == "__main__":
print("Launching Gradio interface...")
iface.launch()