Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import CLIPModel, CLIPProcessor | |
from PIL import Image | |
import requests | |
# Step 1: Load Fine-Tuned Model from Hugging Face Model Hub | |
model_name = "quadranttechnologies/retail-content-safety-clip-finetuned" | |
print("Initializing the application...") | |
try: | |
print("Loading the model from Hugging Face Model Hub...") | |
model = CLIPModel.from_pretrained(model_name, trust_remote_code=True) | |
processor = CLIPProcessor.from_pretrained(model_name) | |
print("Model and processor loaded successfully.") | |
except Exception as e: | |
print(f"Error loading the model or processor: {e}") | |
raise RuntimeError(f"Failed to load model: {e}") | |
# Step 2: Minimal Test Case to Verify Model and Processor | |
try: | |
print("Running a minimal test case with the model...") | |
# Test Image URL | |
url = "https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png" | |
image = Image.open(requests.get(url, stream=True).raw) | |
# Define test categories | |
test_categories = ["safe", "unsafe"] | |
# Process the image | |
test_inputs = processor(text=test_categories, images=image, return_tensors="pt", padding=True) | |
print(f"Test inputs processed: {test_inputs}") | |
# Perform inference | |
test_outputs = model(**test_inputs) | |
print(f"Test outputs: {test_outputs}") | |
# Check probabilities | |
test_logits = test_outputs.logits_per_image | |
test_probs = test_logits.softmax(dim=1) | |
print(f"Test probabilities: {test_probs}") | |
except Exception as e: | |
print(f"Error during the minimal test case: {e}") | |
raise RuntimeError(f"Test case failed: {e}") | |
# Step 3: Define the Inference Function | |
def classify_image(image): | |
""" | |
Classify an image as 'safe' or 'unsafe' and return probabilities. | |
Args: | |
image (PIL.Image.Image): Uploaded image. | |
Returns: | |
str: Predicted category. | |
dict: Probabilities for "safe" and "unsafe". | |
""" | |
try: | |
print("Starting image classification...") | |
# Check if the image is valid | |
if image is None: | |
raise ValueError("No image provided. Please upload a valid image.") | |
if not hasattr(image, "convert"): | |
raise ValueError("Uploaded file is not a valid image format.") | |
# Define main categories | |
categories = ["safe", "unsafe"] | |
print(f"Categories: {categories}") | |
# Process the image | |
print("Processing the image with the processor...") | |
inputs = processor(text=categories, images=image, return_tensors="pt", padding=True) | |
print(f"Processed inputs: {inputs}") | |
# Perform inference | |
print("Running model inference...") | |
outputs = model(**inputs) | |
print(f"Model outputs: {outputs}") | |
# Calculate probabilities | |
logits_per_image = outputs.logits_per_image | |
probs = logits_per_image.softmax(dim=1) | |
print(f"Probabilities: {probs}") | |
# Extract probabilities for each category | |
safe_prob = probs[0][0].item() * 100 | |
unsafe_prob = probs[0][1].item() * 100 | |
# Determine the predicted category | |
predicted_category = "safe" if safe_prob > unsafe_prob else "unsafe" | |
print(f"Predicted category: {predicted_category}") | |
# Return the predicted category and probabilities | |
return predicted_category, {"safe": f"{safe_prob:.2f}%", "unsafe": f"{unsafe_prob:.2f}%"} | |
except Exception as e: | |
print(f"Error during classification: {e}") | |
return f"Error: {str(e)}", {} | |
# Step 4: Set Up Gradio Interface | |
iface = gr.Interface( | |
fn=classify_image, | |
inputs=gr.Image(type="pil"), | |
outputs=[ | |
gr.Textbox(label="Predicted Category"), # Display the predicted category prominently | |
gr.Label(label="Probabilities"), # Display probabilities with a progress bar | |
], | |
title="Content Safety Classification", | |
description="Upload an image to classify it as 'safe' or 'unsafe' with corresponding probabilities.", | |
) | |
# Step 5: Launch Gradio Interface | |
if __name__ == "__main__": | |
print("Launching Gradio interface...") | |
iface.launch() | |