Content_safety / app.py
Dileep7729's picture
Update app.py
ab3b271 verified
raw
history blame
3.29 kB
import gradio as gr
from transformers import CLIPModel, CLIPProcessor
from PIL import Image
# Step 1: Load Fine-Tuned Model from Hugging Face Model Hub
model_name = "quadranttechnologies/retail-content-safety-clip-finetuned"
print("Initializing the application...")
try:
print("Loading the model from Hugging Face Model Hub...")
model = CLIPModel.from_pretrained(model_name, trust_remote_code=True)
processor = CLIPProcessor.from_pretrained(model_name)
print("Model and processor loaded successfully.")
except Exception as e:
print(f"Error loading the model or processor: {e}")
raise RuntimeError(f"Failed to load model: {e}")
# Step 2: Define the Inference Function
def classify_image(image):
"""
Classify an image as 'safe' or 'unsafe' and return probabilities.
Args:
image (PIL.Image.Image): Uploaded image.
Returns:
dict: Classification results or an error message.
"""
try:
print("Starting image classification...")
# Validate input
if image is None:
raise ValueError("No image provided. Please upload a valid image.")
# Validate image format
if not hasattr(image, "convert"):
raise ValueError("Invalid image format. Please upload a valid image (JPEG, PNG, etc.).")
# Define categories
categories = ["safe", "unsafe"]
# Process the image with the processor
print("Processing the image...")
inputs = processor(text=categories, images=image, return_tensors="pt", padding=True)
print(f"Processed inputs: {inputs}")
# Run inference with the model
print("Running model inference...")
outputs = model(**inputs)
logits_per_image = outputs.logits_per_image # Image-text similarity scores
print(f"Logits per image: {logits_per_image}")
# Apply softmax to convert logits to probabilities
probs = logits_per_image.softmax(dim=1) # Convert logits to probabilities
print(f"Softmax probabilities: {probs}")
# Extract probabilities for each category
safe_prob = probs[0][0].item()
unsafe_prob = probs[0][1].item()
# Normalize probabilities to ensure they sum to 100%
total_prob = safe_prob + unsafe_prob
safe_percentage = (safe_prob / total_prob) * 100
unsafe_percentage = (unsafe_prob / total_prob) * 100
print(f"Normalized percentages: safe={safe_percentage}, unsafe={unsafe_percentage}")
# Return results
return {
"safe": safe_percentage,
"unsafe": unsafe_percentage
}
except Exception as e:
print(f"Error during classification: {e}")
return {"Error": str(e)}
# Step 3: Set Up Gradio Interface
iface = gr.Interface(
fn=classify_image,
inputs=gr.Image(type="pil"),
outputs=gr.Label(num_top_classes=2), # Use gr.Label to display probabilities with a bar-style visualization
title="Content Safety Classification",
description="Upload an image to classify it as 'safe' or 'unsafe' with corresponding probabilities.",
)
# Step 4: Launch Gradio Interface
if __name__ == "__main__":
print("Launching the Gradio interface...")
iface.launch()