File size: 3,290 Bytes
514b8b1
4df31f3
790f088
514b8b1
dcff825
4df31f3
dcff825
790f088
 
 
 
 
 
 
 
 
 
988ceee
dcff825
a41b014
988ceee
790f088
988ceee
 
790f088
dcff825
988ceee
790f088
988ceee
790f088
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab3b271
 
 
790f088
ab3b271
790f088
ab3b271
a2a2ce4
 
790f088
ab3b271
 
 
 
 
a2a2ce4
 
ca68fdd
a2a2ce4
 
790f088
 
 
934fd4a
 
 
ab3b271
934fd4a
 
 
 
45892bc
934fd4a
 
 
 
1b54fc6
934fd4a
 
 
 
7c06143
514b8b1
 
 
 
 
 
 
 
 
 
 
 
bbfef86
4df31f3
a41b014
a16e363
610954a
d237a07
52ea34b
bdea63d
4d41f6e
e99084c
f3de939
dcff825
 
988ceee
e305da6
ca0f653
790f088
1aaff03
1b54fc6
ca68fdd
45892bc
cb84f56
9303fde
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import gradio as gr
from transformers import CLIPModel, CLIPProcessor
from PIL import Image

# Step 1: Load Fine-Tuned Model from Hugging Face Model Hub
model_name = "quadranttechnologies/retail-content-safety-clip-finetuned"

print("Initializing the application...")

try:
    print("Loading the model from Hugging Face Model Hub...")
    model = CLIPModel.from_pretrained(model_name, trust_remote_code=True)
    processor = CLIPProcessor.from_pretrained(model_name)
    print("Model and processor loaded successfully.")
except Exception as e:
    print(f"Error loading the model or processor: {e}")
    raise RuntimeError(f"Failed to load model: {e}")

# Step 2: Define the Inference Function
def classify_image(image):
    """
    Classify an image as 'safe' or 'unsafe' and return probabilities.

    Args:
        image (PIL.Image.Image): Uploaded image.
    
    Returns:
        dict: Classification results or an error message.
    """
    try:
        print("Starting image classification...")

        # Validate input
        if image is None:
            raise ValueError("No image provided. Please upload a valid image.")

        # Validate image format
        if not hasattr(image, "convert"):
            raise ValueError("Invalid image format. Please upload a valid image (JPEG, PNG, etc.).")

        # Define categories
        categories = ["safe", "unsafe"]

        # Process the image with the processor
        print("Processing the image...")
        inputs = processor(text=categories, images=image, return_tensors="pt", padding=True)
        print(f"Processed inputs: {inputs}")

        # Run inference with the model
        print("Running model inference...")
        outputs = model(**inputs)
        logits_per_image = outputs.logits_per_image  # Image-text similarity scores
        print(f"Logits per image: {logits_per_image}")

        # Apply softmax to convert logits to probabilities
        probs = logits_per_image.softmax(dim=1)  # Convert logits to probabilities
        print(f"Softmax probabilities: {probs}")

        # Extract probabilities for each category
        safe_prob = probs[0][0].item()
        unsafe_prob = probs[0][1].item()

        # Normalize probabilities to ensure they sum to 100%
        total_prob = safe_prob + unsafe_prob
        safe_percentage = (safe_prob / total_prob) * 100
        unsafe_percentage = (unsafe_prob / total_prob) * 100
        print(f"Normalized percentages: safe={safe_percentage}, unsafe={unsafe_percentage}")

        # Return results
        return {
            "safe": safe_percentage,
            "unsafe": unsafe_percentage
        }

    except Exception as e:
        print(f"Error during classification: {e}")
        return {"Error": str(e)}


# Step 3: Set Up Gradio Interface
iface = gr.Interface(
    fn=classify_image,
    inputs=gr.Image(type="pil"),
    outputs=gr.Label(num_top_classes=2),  # Use gr.Label to display probabilities with a bar-style visualization
    title="Content Safety Classification",
    description="Upload an image to classify it as 'safe' or 'unsafe' with corresponding probabilities.",
)

# Step 4: Launch Gradio Interface
if __name__ == "__main__":
    print("Launching the Gradio interface...")
    iface.launch()