|
import gradio as gr
|
|
from transformers import LayoutLMv3Processor, LayoutLMv3ForTokenClassification
|
|
from PIL import Image
|
|
import pytesseract
|
|
|
|
|
|
model = LayoutLMv3ForTokenClassification.from_pretrained("./model")
|
|
processor = LayoutLMv3Processor.from_pretrained("./model")
|
|
|
|
|
|
id2label = {0: "company", 1: "date", 2: "address", 3: "total", 4: "other"}
|
|
|
|
def predict_receipt(image):
|
|
ocr_data = pytesseract.image_to_data(image, output_type=pytesseract.Output.DICT)
|
|
texts = ocr_data["text"]
|
|
boxes = [
|
|
[
|
|
ocr_data["left"][i],
|
|
ocr_data["top"][i],
|
|
ocr_data["left"][i] + ocr_data["width"][i],
|
|
ocr_data["top"][i] + ocr_data["height"][i],
|
|
]
|
|
for i in range(len(ocr_data["text"]))
|
|
]
|
|
encoding = processor(image, text=texts, boxes=boxes, return_tensors="pt", truncation=True, padding="max_length")
|
|
outputs = model(**{k: v for k, v in encoding.items()})
|
|
predictions = outputs.logits.argmax(-1).squeeze().tolist()
|
|
labeled_output = {id2label[pred]: texts[i] for i, pred in enumerate(predictions) if pred != 4}
|
|
return labeled_output
|
|
|
|
interface = gr.Interface(
|
|
fn=predict_receipt,
|
|
inputs=gr.Image(type="pil"),
|
|
outputs="json",
|
|
title="Receipt Analyzer",
|
|
description="Upload a receipt image to extract key information."
|
|
)
|
|
|
|
if __name__ == "__main__":
|
|
interface.launch()
|
|
|