|
import gradio as gr
|
|
import torch
|
|
from transformers import LayoutLMv3Processor, LayoutLMv3ForTokenClassification
|
|
import pytesseract
|
|
|
|
|
|
import pytesseract
|
|
pytesseract.pytesseract.tesseract_cmd = r"C:\Program Files\Tesseract-OCR\tesseract.exe"
|
|
|
|
|
|
|
|
processor = LayoutLMv3Processor.from_pretrained("quadranttechnologies/Table_OCR")
|
|
model = LayoutLMv3ForTokenClassification.from_pretrained("quadranttechnologies/Table_OCR")
|
|
model.eval()
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
model.to(device)
|
|
|
|
def process_image(image):
|
|
try:
|
|
|
|
encoding = processor(image, return_tensors="pt", truncation=True, padding="max_length", max_length=512)
|
|
|
|
|
|
encoding = {key: val.to(device) for key, val in encoding.items()}
|
|
|
|
|
|
with torch.no_grad():
|
|
outputs = model(**encoding)
|
|
predictions = torch.argmax(outputs.logits, dim=-1)
|
|
|
|
|
|
words = encoding["input_ids"]
|
|
bboxes = encoding["bbox"]
|
|
labels = predictions.squeeze().tolist()
|
|
|
|
|
|
structured_output = []
|
|
for word_id, bbox, label in zip(words.squeeze().tolist(), bboxes.squeeze().tolist(), labels):
|
|
|
|
word = processor.tokenizer.decode([word_id]).strip()
|
|
if word:
|
|
structured_output.append({
|
|
"word": word,
|
|
"bounding_box": bbox,
|
|
"label": model.config.id2label[label]
|
|
})
|
|
|
|
return structured_output
|
|
|
|
except Exception as e:
|
|
return {"error": str(e)}
|
|
|
|
|
|
interface = gr.Interface(
|
|
fn=process_image,
|
|
inputs=gr.Image(type="pil"),
|
|
outputs="json",
|
|
title="Table OCR",
|
|
description="Upload an image (e.g., receipt or document) to extract structured information in JSON format."
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
interface.launch(share=True)
|
|
|
|
|
|
|
|
|
|
|