Spaces:
Running
on
Zero
Running
on
Zero
import math | |
import torch.nn as nn | |
import torch.utils.model_zoo as model_zoo | |
from model.deep_lab_model.sync_batchnorm.batchnorm import SynchronizedBatchNorm2d | |
class Bottleneck(nn.Module): | |
expansion = 4 | |
def __init__(self, inplanes, planes, stride=1, dilation=1, downsample=None, BatchNorm=None): | |
super(Bottleneck, self).__init__() | |
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) | |
self.bn1 = BatchNorm(planes) | |
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, | |
dilation=dilation, padding=dilation, bias=False) | |
self.bn2 = BatchNorm(planes) | |
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) | |
self.bn3 = BatchNorm(planes * 4) | |
self.relu = nn.ReLU(inplace=True) | |
self.downsample = downsample | |
self.stride = stride | |
self.dilation = dilation | |
def forward(self, x): | |
residual = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
out = self.relu(out) | |
out = self.conv3(out) | |
out = self.bn3(out) | |
if self.downsample is not None: | |
residual = self.downsample(x) | |
out += residual | |
out = self.relu(out) | |
return out | |
class ResNet(nn.Module): | |
def __init__(self, block, layers, output_stride, BatchNorm, pretrained=True): | |
self.inplanes = 64 | |
super(ResNet, self).__init__() | |
blocks = [1, 2, 4] | |
if output_stride == 16: | |
strides = [1, 2, 2, 1] | |
dilations = [1, 1, 1, 2] | |
elif output_stride == 8: | |
strides = [1, 2, 1, 1] | |
dilations = [1, 1, 2, 4] | |
else: | |
raise NotImplementedError | |
# Modules | |
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, | |
bias=False) | |
self.bn1 = BatchNorm(64) | |
self.relu = nn.ReLU(inplace=True) | |
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | |
self.layer1 = self._make_layer(block, 64, layers[0], stride=strides[0], dilation=dilations[0], BatchNorm=BatchNorm) | |
self.layer2 = self._make_layer(block, 128, layers[1], stride=strides[1], dilation=dilations[1], BatchNorm=BatchNorm) | |
self.layer3 = self._make_layer(block, 256, layers[2], stride=strides[2], dilation=dilations[2], BatchNorm=BatchNorm) | |
self.layer4 = self._make_MG_unit(block, 512, blocks=blocks, stride=strides[3], dilation=dilations[3], BatchNorm=BatchNorm) | |
# self.layer4 = self._make_layer(block, 512, layers[3], stride=strides[3], dilation=dilations[3], BatchNorm=BatchNorm) | |
self._init_weight() | |
# if pretrained: | |
# self._load_pretrained_model() | |
def _make_layer(self, block, planes, blocks, stride=1, dilation=1, BatchNorm=None): | |
downsample = None | |
if stride != 1 or self.inplanes != planes * block.expansion: | |
downsample = nn.Sequential( | |
nn.Conv2d(self.inplanes, planes * block.expansion, | |
kernel_size=1, stride=stride, bias=False), | |
BatchNorm(planes * block.expansion), | |
) | |
layers = [] | |
layers.append(block(self.inplanes, planes, stride, dilation, downsample, BatchNorm)) | |
self.inplanes = planes * block.expansion | |
for i in range(1, blocks): | |
layers.append(block(self.inplanes, planes, dilation=dilation, BatchNorm=BatchNorm)) | |
return nn.Sequential(*layers) | |
def _make_MG_unit(self, block, planes, blocks, stride=1, dilation=1, BatchNorm=None): | |
downsample = None | |
if stride != 1 or self.inplanes != planes * block.expansion: | |
downsample = nn.Sequential( | |
nn.Conv2d(self.inplanes, planes * block.expansion, | |
kernel_size=1, stride=stride, bias=False), | |
BatchNorm(planes * block.expansion), | |
) | |
layers = [] | |
layers.append(block(self.inplanes, planes, stride, dilation=blocks[0]*dilation, | |
downsample=downsample, BatchNorm=BatchNorm)) | |
self.inplanes = planes * block.expansion | |
for i in range(1, len(blocks)): | |
layers.append(block(self.inplanes, planes, stride=1, | |
dilation=blocks[i]*dilation, BatchNorm=BatchNorm)) | |
return nn.Sequential(*layers) | |
def forward(self, input): | |
x = self.conv1(input) | |
x = self.bn1(x) | |
x = self.relu(x) | |
x = self.maxpool(x) | |
x = self.layer1(x) | |
low_level_feat = x | |
x = self.layer2(x) | |
x = self.layer3(x) | |
x = self.layer4(x) | |
return x, low_level_feat | |
def _init_weight(self): | |
for m in self.modules(): | |
if isinstance(m, nn.Conv2d): | |
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | |
m.weight.data.normal_(0, math.sqrt(2. / n)) | |
elif isinstance(m, SynchronizedBatchNorm2d): | |
m.weight.data.fill_(1) | |
m.bias.data.zero_() | |
elif isinstance(m, nn.BatchNorm2d): | |
m.weight.data.fill_(1) | |
m.bias.data.zero_() | |
def _load_pretrained_model(self): | |
import urllib.request | |
import ssl | |
ssl._create_default_https_context = ssl._create_unverified_context | |
response = urllib.request.urlopen('https://download.pytorch.org/models/resnet101-5d3b4d8f.pth') | |
pretrain_dict = model_zoo.load_url('https://download.pytorch.org/models/resnet101-5d3b4d8f.pth') | |
model_dict = {} | |
state_dict = self.state_dict() | |
for k, v in pretrain_dict.items(): | |
if k in state_dict: | |
# if 'conv1' in k: | |
# continue | |
model_dict[k] = v | |
state_dict.update(model_dict) | |
self.load_state_dict(state_dict) | |
def ResNet101(output_stride, BatchNorm, pretrained=True): | |
"""Constructs a ResNet-101 model. | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
""" | |
model = ResNet(Bottleneck, [3, 4, 23, 3], output_stride, BatchNorm, pretrained=pretrained) | |
return model | |
if __name__ == "__main__": | |
import torch | |
model = ResNet101(BatchNorm=nn.BatchNorm2d, pretrained=True, output_stride=8) | |
input = torch.rand(1, 3, 512, 512) | |
output, low_level_feat = model(input) | |
print(output.size()) | |
print(low_level_feat.size()) |