File size: 1,415 Bytes
e3b6619
c17b3c4
e3b6619
c32054a
e3b6619
 
 
 
 
d745297
e3b6619
 
 
5d70b52
e3b6619
 
910ab21
e3b6619
 
d4c9962
e3b6619
 
 
 
 
 
 
 
c17b3c4
d4c9962
e3b6619
 
 
c32054a
e3b6619
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
import torch

# Load the base model and tokenizer
model_id = "unsloth/Meta-Llama-3.1-8B"  # Use the appropriate LLaMA 3.1 8b model ID
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float32)  # Use torch.float32 for CPU
model.to("cpu")  # Ensure the model is loaded on CPU

# Load your LoRA adapter
adapter_repo = "raccoote/angry-birds-v2"  # Your repository path
adapter_weight_name = "adapter_model.safetensors"  # The weight file name

# Load LoRA weights
peft_model = PeftModel.from_pretrained(model, adapter_repo, weight_name=adapter_weight_name, adapter_name="angry_birds")

# Prepare for inference
def generate_text(prompt, model, tokenizer, peft_model, max_length=50):
    inputs = tokenizer(prompt, return_tensors="pt")
    outputs = peft_model.generate(
        **inputs, 
        max_length=max_length, 
        num_return_sequences=1,
        do_sample=True,  # or use `do_sample=False` for deterministic outputs
        top_p=0.95,  # or other sampling parameters
        temperature=0.7
    )
    return tokenizer.decode(outputs[0], skip_special_tokens=True)

# Generate text with the loaded LoRA adapter
prompt = "large piggy on wooden tower"
generated_text = generate_text(prompt, model, tokenizer, peft_model)

print(generated_text)