File size: 5,349 Bytes
9f0c5bb
 
 
 
 
 
 
 
 
 
 
 
 
9a8789a
9f0c5bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a8789a
9f0c5bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c81b63
 
 
 
9f0c5bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c81b63
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
from diffusers import AutoPipelineForImage2Image, AutoencoderTiny
from compel import Compel
import torch

try:
    import intel_extension_for_pytorch as ipex  # type: ignore
except:
    pass

import psutil
from config import Args
from pydantic import BaseModel, Field
from PIL import Image
from util import ParamsModel
import math

base_model = "IDKiro/sdxs-512-0.9"
taesd_model = "madebyollin/taesd"

default_prompt = "Portrait of The Terminator with , glare pose, detailed, intricate, full of colour, cinematic lighting, trending on artstation, 8k, hyperrealistic, focused, extreme details, unreal engine 5 cinematic, masterpiece"
page_content = """
<h1 class="text-3xl font-bold">Real-Time Latent SDXS</h1>
<h3 class="text-xl font-bold">Image-to-Image SDXS</h3>
<p class="text-sm">
    This demo showcases
    <a
    href="https://huggingface.co/blog/lcm_lora"
    target="_blank"
    class="text-blue-500 underline hover:no-underline">LCM</a>
Image to Image pipeline using
    <a
    href="https://huggingface.co/docs/diffusers/main/en/using-diffusers/lcm#performing-inference-with-lcm"
    target="_blank"
    class="text-blue-500 underline hover:no-underline">Diffusers</a
    > with a MJPEG stream server.
</p>
<p class="text-sm text-gray-500">
    Change the prompt to generate different images, accepts <a
    href="https://github.com/damian0815/compel/blob/main/doc/syntax.md"
    target="_blank"
    class="text-blue-500 underline hover:no-underline">Compel</a
    > syntax.
</p>
"""


class Pipeline:
    class Info(BaseModel):
        name: str = "img2img"
        title: str = "Image-to-Image SDXS"
        description: str = "Generates an image from a text prompt"
        input_mode: str = "image"
        page_content: str = page_content

    class InputParams(ParamsModel):
        prompt: str = Field(
            default_prompt,
            title="Prompt",
            field="textarea",
            id="prompt",
        )
        seed: int = Field(
            2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
        )
        steps: int = Field(
            1, min=1, max=15, title="Steps", field="range", hide=True, id="steps"
        )
        width: int = Field(
            512, min=2, max=15, title="Width", disabled=True, hide=True, id="width"
        )
        height: int = Field(
            512, min=2, max=15, title="Height", disabled=True, hide=True, id="height"
        )
        guidance_scale: float = Field(
            0.0,
            min=0,
            max=20,
            step=0.001,
            title="Guidance Scale",
            field="range",
            hide=True,
            id="guidance_scale",
        )
        strength: float = Field(
            0.5,
            min=0.25,
            max=1.0,
            step=0.001,
            title="Strength",
            field="range",
            hide=True,
            id="strength",
        )

    def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype):
        self.pipe = AutoPipelineForImage2Image.from_pretrained(
            base_model,
            safety_checker=None,
        )
        if args.taesd:
            self.pipe.vae = AutoencoderTiny.from_pretrained(
                taesd_model, torch_dtype=torch_dtype, use_safetensors=True
            ).to(device)

        if args.sfast:
            from sfast.compilers.stable_diffusion_pipeline_compiler import (
                compile,
                CompilationConfig,
            )

            config = CompilationConfig.Default()
            config.enable_xformers = True
            config.enable_triton = True
            config.enable_cuda_graph = True
            self.pipe = compile(self.pipe, config=config)

        self.pipe.set_progress_bar_config(disable=True)
        self.pipe.to(device=device, dtype=torch_dtype)
        if device.type != "mps":
            self.pipe.unet.to(memory_format=torch.channels_last)

        if args.torch_compile:
            print("Running torch compile")
            self.pipe.unet = torch.compile(
                self.pipe.unet, mode="reduce-overhead", fullgraph=True
            )
            self.pipe.vae = torch.compile(
                self.pipe.vae, mode="reduce-overhead", fullgraph=True
            )

            self.pipe(
                prompt="warmup",
                image=[Image.new("RGB", (768, 768))],
            )

        if args.compel:
            self.compel_proc = Compel(
                tokenizer=self.pipe.tokenizer,
                text_encoder=self.pipe.text_encoder,
                truncate_long_prompts=False,
            )

    def predict(self, params: "Pipeline.InputParams") -> Image.Image:
        generator = torch.manual_seed(params.seed)
        prompt_embeds = None
        prompt = params.prompt
        if hasattr(self, "compel_proc"):
            prompt_embeds = self.compel_proc(params.prompt)
            prompt = None

        results = self.pipe(
            image=params.image,
            prompt=prompt,
            prompt_embeds=prompt_embeds,
            generator=generator,
            strength=params.strength,
            num_inference_steps=params.steps,
            guidance_scale=params.guidance_scale,
            width=params.width,
            height=params.height,
            output_type="pil",
        )
        return results.images[0]