Spaces:
Running
on
A100
Running
on
A100
safety checker
Browse files
server/pipelines/controlnetLoraSDXL-Lightning.py
CHANGED
@@ -169,6 +169,7 @@ class Pipeline:
|
|
169 |
)
|
170 |
|
171 |
def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype):
|
|
|
172 |
if args.safety_checker:
|
173 |
self.safety_checker = SafetyChecker(device=device.type)
|
174 |
|
@@ -292,9 +293,8 @@ class Pipeline:
|
|
292 |
images = results.images
|
293 |
if self.safety_checker:
|
294 |
images, has_nsfw_concepts = self.safety_checker(images)
|
295 |
-
|
296 |
-
|
297 |
-
return None
|
298 |
|
299 |
result_image = results.images[0]
|
300 |
if params.debug_canny:
|
|
|
169 |
)
|
170 |
|
171 |
def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype):
|
172 |
+
self.safety_checker = None
|
173 |
if args.safety_checker:
|
174 |
self.safety_checker = SafetyChecker(device=device.type)
|
175 |
|
|
|
293 |
images = results.images
|
294 |
if self.safety_checker:
|
295 |
images, has_nsfw_concepts = self.safety_checker(images)
|
296 |
+
if any(has_nsfw_concepts):
|
297 |
+
return None
|
|
|
298 |
|
299 |
result_image = results.images[0]
|
300 |
if params.debug_canny:
|
server/pipelines/controlnetSDTurbo.py
CHANGED
@@ -7,18 +7,17 @@ from diffusers import (
|
|
7 |
from compel import Compel
|
8 |
import torch
|
9 |
from pipelines.utils.canny_gpu import SobelOperator
|
|
|
10 |
|
11 |
try:
|
12 |
import intel_extension_for_pytorch as ipex # type: ignore
|
13 |
except:
|
14 |
pass
|
15 |
|
16 |
-
import psutil
|
17 |
from config import Args
|
18 |
from pydantic import BaseModel, Field
|
19 |
from PIL import Image
|
20 |
import math
|
21 |
-
import time
|
22 |
|
23 |
#
|
24 |
taesd_model = "madebyollin/taesd"
|
@@ -163,17 +162,16 @@ class Pipeline:
|
|
163 |
)
|
164 |
self.pipes = {}
|
165 |
|
|
|
166 |
if args.safety_checker:
|
167 |
-
self.
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
torch_dtype=torch_dtype,
|
176 |
-
)
|
177 |
|
178 |
if args.taesd:
|
179 |
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
@@ -269,13 +267,11 @@ class Pipeline:
|
|
269 |
control_guidance_start=params.controlnet_start,
|
270 |
control_guidance_end=params.controlnet_end,
|
271 |
)
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
if nsfw_content_detected:
|
278 |
-
return None
|
279 |
result_image = results.images[0]
|
280 |
if params.debug_canny:
|
281 |
# paste control_image on top of result_image
|
|
|
7 |
from compel import Compel
|
8 |
import torch
|
9 |
from pipelines.utils.canny_gpu import SobelOperator
|
10 |
+
from pipelines.utils.safety_checker import SafetyChecker
|
11 |
|
12 |
try:
|
13 |
import intel_extension_for_pytorch as ipex # type: ignore
|
14 |
except:
|
15 |
pass
|
16 |
|
|
|
17 |
from config import Args
|
18 |
from pydantic import BaseModel, Field
|
19 |
from PIL import Image
|
20 |
import math
|
|
|
21 |
|
22 |
#
|
23 |
taesd_model = "madebyollin/taesd"
|
|
|
162 |
)
|
163 |
self.pipes = {}
|
164 |
|
165 |
+
self.safety_checker = None
|
166 |
if args.safety_checker:
|
167 |
+
self.safety_checker = SafetyChecker(device=device.type)
|
168 |
+
|
169 |
+
self.pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
|
170 |
+
base_model,
|
171 |
+
controlnet=controlnet_canny,
|
172 |
+
safety_checker=None,
|
173 |
+
torch_dtype=torch_dtype,
|
174 |
+
)
|
|
|
|
|
175 |
|
176 |
if args.taesd:
|
177 |
self.pipe.vae = AutoencoderTiny.from_pretrained(
|
|
|
267 |
control_guidance_start=params.controlnet_start,
|
268 |
control_guidance_end=params.controlnet_end,
|
269 |
)
|
270 |
+
images = results.images
|
271 |
+
if self.safety_checker:
|
272 |
+
images, has_nsfw_concepts = self.safety_checker(images)
|
273 |
+
if any(has_nsfw_concepts):
|
274 |
+
return None
|
|
|
|
|
275 |
result_image = results.images[0]
|
276 |
if params.debug_canny:
|
277 |
# paste control_image on top of result_image
|