|
import torch |
|
import gradio as gr |
|
from typing import Tuple, Dict |
|
from torchvision import models |
|
import torch.nn as nn |
|
|
|
from model import get_transforms, create_effnetb2_model |
|
|
|
model = create_effnetb2_model(num_classes=3) |
|
model.eval() |
|
|
|
cns = ['negative', 'neutral', 'positive'] |
|
|
|
def predict(img) -> Tuple[Dict, float]: |
|
transform = get_transforms() |
|
img = transform(img).unsqueeze(0) |
|
|
|
with torch.inference_mode(): |
|
pred_probs = torch.softmax(model(img), dim=1) |
|
|
|
pred_labels_and_probs = {cns[i]: float(pred_probs[0][i]) for i in range(len(cns))} |
|
|
|
return pred_labels_and_probs |
|
|
|
title = "Effnetb2 Sentiment Analysis" |
|
description = "An EfficientNetB2 feature extractor computer vision model to analyse image sentiment." |
|
|
|
demo = gr.Interface(fn=predict, |
|
inputs=gr.Image(type="pil"), |
|
outputs=[gr.Label(num_top_classes=3, label="Predictions")], |
|
title=title, |
|
description=description) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |