Update app.py
Browse files
app.py
CHANGED
@@ -147,18 +147,26 @@ def predict(wave):
|
|
147 |
with torch.no_grad():
|
148 |
prediction = model(wave)
|
149 |
predicted_emotion, confidence = decode_emotion_prediction(prediction, le)
|
150 |
-
return f"Predicted emotion: {predicted_emotion} (Confidence: {confidence:.
|
151 |
except Exception as e:
|
152 |
return f'Error in processing audio: {str(e)}'
|
153 |
|
154 |
# Gradio Interface
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
iface = gr.Interface(
|
156 |
fn=predict,
|
157 |
inputs=gr.Audio(sources="microphone", type="filepath"),
|
158 |
outputs="text",
|
159 |
live=True,
|
160 |
title="Speech Emotion Recognition",
|
161 |
-
description="Record your voice and get the predicted emotion."
|
|
|
162 |
)
|
163 |
|
164 |
iface.launch()
|
|
|
147 |
with torch.no_grad():
|
148 |
prediction = model(wave)
|
149 |
predicted_emotion, confidence = decode_emotion_prediction(prediction, le)
|
150 |
+
return f"Predicted emotion: {predicted_emotion} (Confidence: {confidence*100:.4f})"
|
151 |
except Exception as e:
|
152 |
return f'Error in processing audio: {str(e)}'
|
153 |
|
154 |
# Gradio Interface
|
155 |
+
article = """
|
156 |
+
### How It Works
|
157 |
+
- The model classifies the speech emotion given into 6 emotions (Angry, Happy, Sad, Disgusting, Fear, Neutral)
|
158 |
+
- It returns the highest chance of the emotion and its confidence level.
|
159 |
+
- This tool is built with CNN Architecture combined with LSTM Architecture.
|
160 |
+
"""
|
161 |
+
|
162 |
iface = gr.Interface(
|
163 |
fn=predict,
|
164 |
inputs=gr.Audio(sources="microphone", type="filepath"),
|
165 |
outputs="text",
|
166 |
live=True,
|
167 |
title="Speech Emotion Recognition",
|
168 |
+
description="Record your voice and get the predicted emotion.",
|
169 |
+
article=article
|
170 |
)
|
171 |
|
172 |
iface.launch()
|