|
from fastapi import FastAPI |
|
from fastapi.middleware.cors import CORSMiddleware |
|
from pydantic import BaseModel |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
import torch |
|
|
|
|
|
model_name = "w11wo/indonesian-roberta-base-sentiment-classifier" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForSequenceClassification.from_pretrained(model_name) |
|
|
|
|
|
app = FastAPI() |
|
|
|
app.add_middleware( |
|
CORSMiddleware, |
|
allow_origins=["*"], |
|
allow_credentials=True, |
|
allow_methods=["*"], |
|
allow_headers=["*"], |
|
) |
|
|
|
|
|
class TextInput(BaseModel): |
|
text: str |
|
|
|
|
|
def predict_sentiment(text): |
|
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True) |
|
outputs = model(**inputs) |
|
scores = outputs.logits[0].detach().numpy() |
|
predictions = torch.nn.functional.softmax(torch.tensor(scores), dim=0) |
|
sentiment = torch.argmax(predictions).item() |
|
return sentiment, predictions[sentiment].item() |
|
|
|
|
|
@app.post("/predict") |
|
async def predict(input: TextInput): |
|
sentiment, confidence = predict_sentiment(input.text) |
|
return {"sentiment": sentiment, "confidence": confidence} |
|
|
|
|
|
@app.get("/") |
|
async def read_root(): |
|
return {"message": "Sentiment Analysis API"} |
|
|