Spaces:
Running
Running
from torch import nn | |
import torch.nn.functional as F | |
import torch | |
from torchvision import models | |
# device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
def tensor_size(tensor): | |
channels = tensor.shape[1] | |
height = tensor.shape[2] | |
width = tensor.shape[3] | |
return channels * height * width | |
class ContentLoss(nn.Module): | |
def __init__(self, single_target=False, device='cuda' if torch.cuda.is_available() else 'cpu'): | |
super(ContentLoss, self).__init__() | |
self.single_target = single_target | |
self.device = device | |
self.loss = None | |
def forward(self, stacked_input): | |
if self.single_target: | |
split_size = stacked_input.size()[0] // 2 | |
pred_layer, target_layer = torch.split(stacked_input, split_size, dim=0) | |
else: | |
split_size = stacked_input.size()[0] // 3 | |
pred_layer, _, target_layer = torch.split(stacked_input, split_size, dim=0) | |
content_size = tensor_size(pred_layer) | |
# Define the separate loss function | |
def separated_loss(y_pred, y_true): | |
y_pred = y_pred.float() | |
y_true = y_true.float() | |
diff = torch.abs(y_pred - y_true) | |
l2 = torch.sum(diff ** 2, dim=[1, 2, 3], keepdim=True) / 2.0 | |
return 2. * l2 / content_size | |
# Calculate itemized loss | |
pred_itemized_loss = separated_loss(pred_layer, target_layer) | |
# check if is nan | |
if torch.isnan(pred_itemized_loss).any(): | |
print('pred_itemized_loss is nan') | |
# Calculate the mean of itemized loss | |
loss = torch.mean(pred_itemized_loss, dim=(1, 2, 3), keepdim=True) | |
self.loss = loss | |
return stacked_input | |
def convert_to_gram_matrix(inputs): | |
inputs = inputs.float() | |
shape = inputs.size() | |
batch, filters, height, width = shape[0], shape[1], shape[2], shape[3] | |
size = height * width * filters | |
feats = inputs.view(batch, filters, height * width) | |
feats_t = feats.transpose(1, 2) | |
grams_raw = torch.matmul(feats, feats_t) | |
gram_matrix = grams_raw / size | |
return gram_matrix | |
###################################################################### | |
# Now the style loss module looks almost exactly like the content loss | |
# module. The style distance is also computed using the mean square | |
# error between :math:`G_{XL}` and :math:`G_{SL}`. | |
# | |
class StyleLoss(nn.Module): | |
def __init__(self, single_target=False, device='cuda' if torch.cuda.is_available() else 'cpu'): | |
super(StyleLoss, self).__init__() | |
self.single_target = single_target | |
self.device = device | |
def forward(self, stacked_input): | |
input_dtype = stacked_input.dtype | |
stacked_input = stacked_input.float() | |
if self.single_target: | |
split_size = stacked_input.size()[0] // 2 | |
preds, style_target = torch.split(stacked_input, split_size, dim=0) | |
else: | |
split_size = stacked_input.size()[0] // 3 | |
preds, style_target, _ = torch.split(stacked_input, split_size, dim=0) | |
def separated_loss(y_pred, y_true): | |
gram_size = y_true.size(1) * y_true.size(2) | |
sum_axis = (1, 2) | |
diff = torch.abs(y_pred - y_true) | |
raw_loss = torch.sum(diff ** 2, dim=sum_axis, keepdim=True) | |
return raw_loss / gram_size | |
target_grams = convert_to_gram_matrix(style_target) | |
pred_grams = convert_to_gram_matrix(preds) | |
itemized_loss = separated_loss(pred_grams, target_grams) | |
# check if is nan | |
if torch.isnan(itemized_loss).any(): | |
print('itemized_loss is nan') | |
# reshape itemized loss to be (batch, 1, 1, 1) | |
itemized_loss = torch.unsqueeze(itemized_loss, dim=1) | |
# gram_size = (tf.shape(target_grams)[1] * tf.shape(target_grams)[2]) | |
loss = torch.mean(itemized_loss, dim=(1, 2), keepdim=True) | |
self.loss = loss.to(input_dtype).float() | |
return stacked_input.to(input_dtype) | |
# create a module to normalize input image so we can easily put it in a | |
# ``nn.Sequential`` | |
class Normalization(nn.Module): | |
def __init__(self, device, dtype=torch.float32): | |
super(Normalization, self).__init__() | |
mean = torch.tensor([0.485, 0.456, 0.406]).to(device) | |
std = torch.tensor([0.229, 0.224, 0.225]).to(device) | |
self.dtype = dtype | |
# .view the mean and std to make them [C x 1 x 1] so that they can | |
# directly work with image Tensor of shape [B x C x H x W]. | |
# B is batch size. C is number of channels. H is height and W is width. | |
self.mean = torch.tensor(mean).view(-1, 1, 1) | |
self.std = torch.tensor(std).view(-1, 1, 1) | |
def forward(self, stacked_input): | |
# cast to float 32 if not already # only necessary when processing gram matrix | |
# if stacked_input.dtype != torch.float32: | |
# stacked_input = stacked_input.float() | |
# remove alpha channel if it exists | |
if stacked_input.shape[1] == 4: | |
stacked_input = stacked_input[:, :3, :, :] | |
# normalize to min and max of 0 - 1 | |
in_min = torch.min(stacked_input) | |
in_max = torch.max(stacked_input) | |
# norm_stacked_input = (stacked_input - in_min) / (in_max - in_min) | |
# return (norm_stacked_input - self.mean) / self.std | |
return ((stacked_input - self.mean) / self.std).to(self.dtype) | |
class OutputLayer(nn.Module): | |
def __init__(self, name='output_layer'): | |
super(OutputLayer, self).__init__() | |
self.name = name | |
self.tensor = None | |
def forward(self, stacked_input): | |
self.tensor = stacked_input | |
return stacked_input | |
def get_style_model_and_losses( | |
single_target=True, # false has 3 targets, dont remember why i added this initially, this is old code | |
device='cuda' if torch.cuda.is_available() else 'cpu', | |
output_layer_name=None, | |
dtype=torch.float32 | |
): | |
# content_layers = ['conv_4'] | |
# style_layers = ['conv_1', 'conv_2', 'conv_3', 'conv_4', 'conv_5'] | |
content_layers = ['conv2_2', 'conv3_2', 'conv4_2'] | |
style_layers = ['conv2_1', 'conv3_1', 'conv4_1'] | |
cnn = models.vgg19(pretrained=True).features.to(device, dtype=dtype).eval() | |
# set all weights in the model to our dtype | |
# for layer in cnn.children(): | |
# layer.to(dtype=dtype) | |
# normalization module | |
normalization = Normalization(device, dtype=dtype).to(device) | |
# just in order to have an iterable access to or list of content/style | |
# losses | |
content_losses = [] | |
style_losses = [] | |
# assuming that ``cnn`` is a ``nn.Sequential``, so we make a new ``nn.Sequential`` | |
# to put in modules that are supposed to be activated sequentially | |
model = nn.Sequential(normalization) | |
i = 0 # increment every time we see a conv | |
block = 1 | |
children = list(cnn.children()) | |
output_layer = None | |
for layer in children: | |
if isinstance(layer, nn.Conv2d): | |
i += 1 | |
name = f'conv{block}_{i}_raw' | |
elif isinstance(layer, nn.ReLU): | |
# name = 'relu_{}'.format(i) | |
name = f'conv{block}_{i}' # target this | |
# The in-place version doesn't play very nicely with the ``ContentLoss`` | |
# and ``StyleLoss`` we insert below. So we replace with out-of-place | |
# ones here. | |
layer = nn.ReLU(inplace=False) | |
elif isinstance(layer, nn.MaxPool2d): | |
name = 'pool_{}'.format(i) | |
block += 1 | |
i = 0 | |
elif isinstance(layer, nn.BatchNorm2d): | |
name = 'bn_{}'.format(i) | |
else: | |
raise RuntimeError('Unrecognized layer: {}'.format(layer.__class__.__name__)) | |
model.add_module(name, layer) | |
if name in content_layers: | |
# add content loss: | |
content_loss = ContentLoss(single_target=single_target, device=device) | |
model.add_module("content_loss_{}_{}".format(block, i), content_loss) | |
content_losses.append(content_loss) | |
if name in style_layers: | |
# add style loss: | |
style_loss = StyleLoss(single_target=single_target, device=device) | |
model.add_module("style_loss_{}_{}".format(block, i), style_loss) | |
style_losses.append(style_loss) | |
if output_layer_name is not None and name == output_layer_name: | |
output_layer = OutputLayer(name) | |
model.add_module("output_layer_{}_{}".format(block, i), output_layer) | |
# now we trim off the layers after the last content and style losses | |
for i in range(len(model) - 1, -1, -1): | |
if isinstance(model[i], ContentLoss) or isinstance(model[i], StyleLoss) or isinstance(model[i], OutputLayer): | |
break | |
model = model[:(i + 1)] | |
model.to(dtype=dtype) | |
return model, style_losses, content_losses, output_layer | |