ai-toolkit / toolkit /style.py
rahul7star's picture
boilerplate
fcc02a2 verified
raw
history blame
8.9 kB
from torch import nn
import torch.nn.functional as F
import torch
from torchvision import models
# device = 'cuda' if torch.cuda.is_available() else 'cpu'
def tensor_size(tensor):
channels = tensor.shape[1]
height = tensor.shape[2]
width = tensor.shape[3]
return channels * height * width
class ContentLoss(nn.Module):
def __init__(self, single_target=False, device='cuda' if torch.cuda.is_available() else 'cpu'):
super(ContentLoss, self).__init__()
self.single_target = single_target
self.device = device
self.loss = None
def forward(self, stacked_input):
if self.single_target:
split_size = stacked_input.size()[0] // 2
pred_layer, target_layer = torch.split(stacked_input, split_size, dim=0)
else:
split_size = stacked_input.size()[0] // 3
pred_layer, _, target_layer = torch.split(stacked_input, split_size, dim=0)
content_size = tensor_size(pred_layer)
# Define the separate loss function
def separated_loss(y_pred, y_true):
y_pred = y_pred.float()
y_true = y_true.float()
diff = torch.abs(y_pred - y_true)
l2 = torch.sum(diff ** 2, dim=[1, 2, 3], keepdim=True) / 2.0
return 2. * l2 / content_size
# Calculate itemized loss
pred_itemized_loss = separated_loss(pred_layer, target_layer)
# check if is nan
if torch.isnan(pred_itemized_loss).any():
print('pred_itemized_loss is nan')
# Calculate the mean of itemized loss
loss = torch.mean(pred_itemized_loss, dim=(1, 2, 3), keepdim=True)
self.loss = loss
return stacked_input
def convert_to_gram_matrix(inputs):
inputs = inputs.float()
shape = inputs.size()
batch, filters, height, width = shape[0], shape[1], shape[2], shape[3]
size = height * width * filters
feats = inputs.view(batch, filters, height * width)
feats_t = feats.transpose(1, 2)
grams_raw = torch.matmul(feats, feats_t)
gram_matrix = grams_raw / size
return gram_matrix
######################################################################
# Now the style loss module looks almost exactly like the content loss
# module. The style distance is also computed using the mean square
# error between :math:`G_{XL}` and :math:`G_{SL}`.
#
class StyleLoss(nn.Module):
def __init__(self, single_target=False, device='cuda' if torch.cuda.is_available() else 'cpu'):
super(StyleLoss, self).__init__()
self.single_target = single_target
self.device = device
def forward(self, stacked_input):
input_dtype = stacked_input.dtype
stacked_input = stacked_input.float()
if self.single_target:
split_size = stacked_input.size()[0] // 2
preds, style_target = torch.split(stacked_input, split_size, dim=0)
else:
split_size = stacked_input.size()[0] // 3
preds, style_target, _ = torch.split(stacked_input, split_size, dim=0)
def separated_loss(y_pred, y_true):
gram_size = y_true.size(1) * y_true.size(2)
sum_axis = (1, 2)
diff = torch.abs(y_pred - y_true)
raw_loss = torch.sum(diff ** 2, dim=sum_axis, keepdim=True)
return raw_loss / gram_size
target_grams = convert_to_gram_matrix(style_target)
pred_grams = convert_to_gram_matrix(preds)
itemized_loss = separated_loss(pred_grams, target_grams)
# check if is nan
if torch.isnan(itemized_loss).any():
print('itemized_loss is nan')
# reshape itemized loss to be (batch, 1, 1, 1)
itemized_loss = torch.unsqueeze(itemized_loss, dim=1)
# gram_size = (tf.shape(target_grams)[1] * tf.shape(target_grams)[2])
loss = torch.mean(itemized_loss, dim=(1, 2), keepdim=True)
self.loss = loss.to(input_dtype).float()
return stacked_input.to(input_dtype)
# create a module to normalize input image so we can easily put it in a
# ``nn.Sequential``
class Normalization(nn.Module):
def __init__(self, device, dtype=torch.float32):
super(Normalization, self).__init__()
mean = torch.tensor([0.485, 0.456, 0.406]).to(device)
std = torch.tensor([0.229, 0.224, 0.225]).to(device)
self.dtype = dtype
# .view the mean and std to make them [C x 1 x 1] so that they can
# directly work with image Tensor of shape [B x C x H x W].
# B is batch size. C is number of channels. H is height and W is width.
self.mean = torch.tensor(mean).view(-1, 1, 1)
self.std = torch.tensor(std).view(-1, 1, 1)
def forward(self, stacked_input):
# cast to float 32 if not already # only necessary when processing gram matrix
# if stacked_input.dtype != torch.float32:
# stacked_input = stacked_input.float()
# remove alpha channel if it exists
if stacked_input.shape[1] == 4:
stacked_input = stacked_input[:, :3, :, :]
# normalize to min and max of 0 - 1
in_min = torch.min(stacked_input)
in_max = torch.max(stacked_input)
# norm_stacked_input = (stacked_input - in_min) / (in_max - in_min)
# return (norm_stacked_input - self.mean) / self.std
return ((stacked_input - self.mean) / self.std).to(self.dtype)
class OutputLayer(nn.Module):
def __init__(self, name='output_layer'):
super(OutputLayer, self).__init__()
self.name = name
self.tensor = None
def forward(self, stacked_input):
self.tensor = stacked_input
return stacked_input
def get_style_model_and_losses(
single_target=True, # false has 3 targets, dont remember why i added this initially, this is old code
device='cuda' if torch.cuda.is_available() else 'cpu',
output_layer_name=None,
dtype=torch.float32
):
# content_layers = ['conv_4']
# style_layers = ['conv_1', 'conv_2', 'conv_3', 'conv_4', 'conv_5']
content_layers = ['conv2_2', 'conv3_2', 'conv4_2']
style_layers = ['conv2_1', 'conv3_1', 'conv4_1']
cnn = models.vgg19(pretrained=True).features.to(device, dtype=dtype).eval()
# set all weights in the model to our dtype
# for layer in cnn.children():
# layer.to(dtype=dtype)
# normalization module
normalization = Normalization(device, dtype=dtype).to(device)
# just in order to have an iterable access to or list of content/style
# losses
content_losses = []
style_losses = []
# assuming that ``cnn`` is a ``nn.Sequential``, so we make a new ``nn.Sequential``
# to put in modules that are supposed to be activated sequentially
model = nn.Sequential(normalization)
i = 0 # increment every time we see a conv
block = 1
children = list(cnn.children())
output_layer = None
for layer in children:
if isinstance(layer, nn.Conv2d):
i += 1
name = f'conv{block}_{i}_raw'
elif isinstance(layer, nn.ReLU):
# name = 'relu_{}'.format(i)
name = f'conv{block}_{i}' # target this
# The in-place version doesn't play very nicely with the ``ContentLoss``
# and ``StyleLoss`` we insert below. So we replace with out-of-place
# ones here.
layer = nn.ReLU(inplace=False)
elif isinstance(layer, nn.MaxPool2d):
name = 'pool_{}'.format(i)
block += 1
i = 0
elif isinstance(layer, nn.BatchNorm2d):
name = 'bn_{}'.format(i)
else:
raise RuntimeError('Unrecognized layer: {}'.format(layer.__class__.__name__))
model.add_module(name, layer)
if name in content_layers:
# add content loss:
content_loss = ContentLoss(single_target=single_target, device=device)
model.add_module("content_loss_{}_{}".format(block, i), content_loss)
content_losses.append(content_loss)
if name in style_layers:
# add style loss:
style_loss = StyleLoss(single_target=single_target, device=device)
model.add_module("style_loss_{}_{}".format(block, i), style_loss)
style_losses.append(style_loss)
if output_layer_name is not None and name == output_layer_name:
output_layer = OutputLayer(name)
model.add_module("output_layer_{}_{}".format(block, i), output_layer)
# now we trim off the layers after the last content and style losses
for i in range(len(model) - 1, -1, -1):
if isinstance(model[i], ContentLoss) or isinstance(model[i], StyleLoss) or isinstance(model[i], OutputLayer):
break
model = model[:(i + 1)]
model.to(dtype=dtype)
return model, style_losses, content_losses, output_layer