Spaces:
Runtime error
Runtime error
import os | |
import math | |
import numpy as np | |
import pandas as pd | |
import seaborn as sn | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torchvision | |
import matplotlib.pyplot as plt | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from pl_bolts.datamodules import CIFAR10DataModule | |
from pl_bolts.transforms.dataset_normalizations import cifar10_normalization | |
from pytorch_lightning import LightningModule, Trainer, seed_everything | |
from pytorch_lightning.callbacks import LearningRateMonitor | |
from pytorch_lightning.callbacks.progress import TQDMProgressBar | |
from pytorch_lightning.loggers import CSVLogger | |
from torch.optim.lr_scheduler import OneCycleLR | |
from torch.optim.swa_utils import AveragedModel, update_bn | |
from torchmetrics.functional import accuracy | |
from pytorch_lightning.callbacks import ModelCheckpoint | |
from torchvision import datasets, transforms, utils | |
from PIL import Image | |
from pytorch_grad_cam import GradCAM | |
from pytorch_grad_cam.utils.image import show_cam_on_image | |
seed_everything(7) | |
class Net_S13(nn.Module): | |
#class ResNet(nn.Module): | |
def __init__(self): | |
super(Net_S13, self).__init__() | |
#super(ResNet, self).__init__() | |
# Control Variable | |
self.printShape = False | |
#Common :- | |
set1 = 64 #prepLayer | |
set2 = 128 #Layer2 | |
set3 = 256 #Layer3 | |
set4 = 512 #Layer4 | |
avg = 1024 #channels | |
drop = 0.1 #dropout | |
S = 1 #stride | |
K = 3 #kernel_size | |
# PrepLayer - Conv 3x3 s1, p1) >> BN >> RELU [64k] | |
I = 3 | |
O = set1 | |
P = 1 #padding | |
self.prepLayer = self.convBlock(in_channels = I, out_channels = O, kernel_size = K, stride = S, padding = P) | |
# Layer1 - | |
# X = Conv 3x3 (s1, p1) >> MaxPool2D >> BN >> RELU [128k] | |
# R1 = ResBlock( (Conv-BN-ReLU-Conv-BN-ReLU))(X) [128k] | |
# Add(X, R1) | |
I = O | |
O = set2 | |
P = 1 #padding | |
self.Layer1 = self.convMPBlock(in_channels = I, out_channels = O, kernel_size = K, stride = S, padding = P) | |
I = O | |
O = I | |
P = 1 #padding | |
self.resNetLayer1Part1 = self.convBlock(in_channels = I, out_channels = O, kernel_size = K, stride = S, padding = P) | |
I = O | |
O = I | |
P = 1 #padding | |
self.resNetLayer1Part2 = self.convBlock(in_channels = I, out_channels = O, kernel_size = K, stride = S, padding = P) | |
# Layer 2 - | |
# Conv 3x3 [256k] | |
# MaxPooling2D | |
# BN | |
# ReLU | |
I = O | |
O = set3 | |
P = 1 #padding | |
self.Layer2 = self.convMPBlock(in_channels = I, out_channels = O, kernel_size = K, stride = S, padding = P) | |
# Layer 3 - | |
# X = Conv 3x3 (s1, p1) >> MaxPool2D >> BN >> RELU [512k] | |
# R2 = ResBlock( (Conv-BN-ReLU-Conv-BN-ReLU))(X) [512k] | |
# Add(X, R2) | |
I = O | |
O = set4 | |
P = 1 #padding | |
self.Layer3 = self.convMPBlock(in_channels = I, out_channels = O, kernel_size = K, stride = S, padding = P) | |
I = O | |
O = I | |
P = 1 #padding | |
self.resNetLayer2Part1 = self.convBlock(in_channels = I, out_channels = O, kernel_size = K, stride = S, padding = P) | |
I = O | |
O = I | |
P = 1 #padding | |
self.resNetLayer2Part2 = self.convBlock(in_channels = I, out_channels = O, kernel_size = K, stride = S, padding = P) | |
# MaxPooling with Kernel Size 4 | |
self.pool = nn.MaxPool2d(kernel_size = 4, stride = 4) | |
# FC Layer | |
I = 512 | |
O = 10 | |
self.lastLayer = nn.Linear(I, O) | |
self.aGAP = nn.AdaptiveAvgPool2d((1, 1)) | |
self.flat = nn.Flatten(1, -1) | |
self.gap = nn.AvgPool2d(avg) | |
self.drop = nn.Dropout(drop) | |
# convolution Block | |
def convBlock(self, in_channels, out_channels, kernel_size, stride, padding, last_layer = False, bias = False): | |
if(False == last_layer): | |
return nn.Sequential( | |
nn.Conv2d(in_channels = in_channels, out_channels = out_channels, stride = stride, padding = padding, kernel_size = kernel_size, bias = bias), | |
nn.BatchNorm2d(out_channels), | |
nn.ReLU()) | |
else: | |
return nn.Sequential( | |
nn.Conv2d(in_channels = in_channels, out_channels = out_channels, stride = stride, padding = padding, kernel_size = kernel_size, bias = bias)) | |
# convolution-MP Block | |
def convMPBlock(self, in_channels, out_channels, kernel_size, stride, padding, bias = False): | |
return nn.Sequential( | |
nn.Conv2d(in_channels = in_channels, out_channels = out_channels, stride = stride, padding = padding, kernel_size = kernel_size, bias = bias), | |
nn.MaxPool2d(kernel_size = 2, stride = 2), | |
nn.BatchNorm2d(out_channels), | |
nn.ReLU()) | |
def printf(self, n, x, string1=""): | |
if(self.printShape): | |
print(f"{n} " f"{x.shape = }" f" {string1}") ## Comment / Uncomment this line towards the no need of print or needed print | |
pass | |
def printEmpty(self,): | |
if(self.printShape): | |
print("") ## Comment / Uncomment this line towards the no need of print or needed print | |
pass | |
def forward(self, x): | |
self.printf(0.0, x, "prepLayer input") | |
x = self.prepLayer(x) | |
x = self.drop(x) | |
self.printf(0.1, x, "prepLayer output") | |
self.printEmpty() | |
self.printf(1.0, x, "Layer1 input") | |
x = self.Layer1(x) | |
self.printf(1.1, x, "Layer1 output --> sacroscant") | |
y = x #sacrosanct path1 | |
self.printf(1.2, x, "Layer1 resnet input") | |
x = self.resNetLayer1Part1(x) #residual path1 | |
x = self.drop(x) | |
x = self.resNetLayer1Part2(x) #residual path1 | |
self.printf(1.3, x, "Layer1 resnet output") | |
x = x + y #adding sacrosanct path1 and residual path1 | |
x = self.drop(x) | |
self.printf(1.4, x, "res+sacrosanct output") | |
self.printEmpty() | |
self.printf(2.0, x, "Layer2 input") | |
x = self.Layer2(x) | |
x = self.drop(x) | |
self.printf(2.1, x, "Layer2 output") | |
self.printEmpty() | |
self.printf(3.0, x, "Layer3 input") | |
x = self.Layer3(x) | |
self.printf(3.1, x, "Layer3 output --> sacroscant") | |
y = x #sacrosanct path2 | |
self.printf(3.2, x, "Layer3 resnet input") | |
x = self.resNetLayer2Part1(x) #residual path2 | |
x = self.drop(x) | |
x = self.resNetLayer2Part2(x) #residual path2 | |
self.printf(3.3, x, "Layer3 resnet output") | |
x = x + y #adding sacrosanct path2 and residual path2 | |
x = self.drop(x) | |
self.printf(3.4, x, "res+sacrosanct output") | |
self.printEmpty() | |
self.printf(4.0, x, "pool input") | |
x = self.pool(x) | |
self.printf(4.1, x, "pool output") | |
self.printEmpty() | |
# x = x.view(-1, 10) | |
self.printf(4.2, x, "For showing before last layer") | |
x = x.view(x.size(0), -1) | |
self.printf(5.0, x, "last layer input") #512, 1, 1 | |
x = self.lastLayer(x) | |
# x = self.gap(x) | |
self.printf(5.1, x, "last layer output") #10, 1, 1 | |
self.printEmpty() | |
# self.printf(7.0, x) | |
return F.log_softmax(x) | |
def create_model(): | |
model = Net_S13() | |
return model | |
class LitResnet(LightningModule): | |
def __init__(self, lr=0.05): | |
super().__init__() | |
self.save_hyperparameters() | |
self.model = create_model() | |
def forward(self, x): | |
out = self.model(x) | |
return F.log_softmax(out, dim=1) | |
def training_step(self, batch, batch_idx): | |
x, y = batch | |
logits = self(x) | |
loss = F.nll_loss(logits, y) | |
self.log("train_loss", loss) | |
return loss | |
def evaluate(self, batch, stage=None): | |
x, y = batch | |
logits = self(x) | |
loss = F.nll_loss(logits, y) | |
preds = torch.argmax(logits, dim=1) | |
acc = accuracy(preds, y, task='MULTICLASS', num_classes=10) | |
if stage: | |
self.log(f"{stage}_loss", loss, prog_bar=True) | |
self.log(f"{stage}_acc", acc, prog_bar=True) | |
def validation_step(self, batch, batch_idx): | |
self.evaluate(batch, "val") | |
def test_step(self, batch, batch_idx): | |
self.evaluate(batch, "test") | |
def configure_optimizers(self): | |
optimizer = torch.optim.SGD( | |
self.parameters(), | |
lr=self.hparams.lr, | |
momentum=0.9, | |
weight_decay=5e-4, | |
) | |
steps_per_epoch = 45000 // BATCH_SIZE | |
scheduler_dict = { | |
"scheduler": OneCycleLR( | |
optimizer, | |
0.1, | |
epochs=self.trainer.max_epochs, | |
steps_per_epoch=steps_per_epoch, | |
), | |
"interval": "step", | |
} | |
return {"optimizer": optimizer, "lr_scheduler": scheduler_dict} |