|
import streamlit as st
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.optim as optim
|
|
import torchvision
|
|
import torchvision.transforms as transforms
|
|
from PIL import Image
|
|
import io
|
|
|
|
|
|
st.set_page_config(page_title="CIFAR-10 Classifier", layout="centered", initial_sidebar_state="collapsed")
|
|
|
|
|
|
st.markdown("""
|
|
<style>
|
|
.stApp {
|
|
background-color: #0E1117;
|
|
color: #FAFAFA;
|
|
}
|
|
.stButton>button {
|
|
background-color: #4CAF50;
|
|
color: white;
|
|
}
|
|
.stHeader {
|
|
background-color: #262730;
|
|
color: white;
|
|
padding: 1rem;
|
|
border-radius: 5px;
|
|
}
|
|
.stImage {
|
|
background-color: #262730;
|
|
padding: 10px;
|
|
border-radius: 5px;
|
|
}
|
|
.stSuccess {
|
|
background-color: #262730;
|
|
color: #4CAF50;
|
|
padding: 10px;
|
|
border-radius: 5px;
|
|
}
|
|
</style>
|
|
""", unsafe_allow_html=True)
|
|
|
|
|
|
class SimpleCNN(nn.Module):
|
|
def __init__(self):
|
|
super(SimpleCNN, self).__init__()
|
|
self.conv1 = nn.Conv2d(3, 32, 3, padding=1)
|
|
self.conv2 = nn.Conv2d(32, 64, 3, padding=1)
|
|
self.pool = nn.MaxPool2d(2, 2)
|
|
self.fc1 = nn.Linear(64 * 8 * 8, 512)
|
|
self.fc2 = nn.Linear(512, 10)
|
|
|
|
def forward(self, x):
|
|
x = self.pool(torch.relu(self.conv1(x)))
|
|
x = self.pool(torch.relu(self.conv2(x)))
|
|
x = x.view(-1, 64 * 8 * 8)
|
|
x = torch.relu(self.fc1(x))
|
|
x = self.fc2(x)
|
|
return x
|
|
|
|
|
|
@st.cache_resource
|
|
def train_model():
|
|
transform = transforms.Compose([
|
|
transforms.ToTensor(),
|
|
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
|
|
])
|
|
|
|
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
|
|
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True)
|
|
|
|
model = SimpleCNN()
|
|
criterion = nn.CrossEntropyLoss()
|
|
optimizer = optim.Adam(model.parameters(), lr=0.001)
|
|
|
|
for epoch in range(5):
|
|
for i, data in enumerate(trainloader, 0):
|
|
inputs, labels = data
|
|
optimizer.zero_grad()
|
|
outputs = model(inputs)
|
|
loss = criterion(outputs, labels)
|
|
loss.backward()
|
|
optimizer.step()
|
|
|
|
return model
|
|
|
|
|
|
@st.cache_resource
|
|
def get_model():
|
|
try:
|
|
model = SimpleCNN()
|
|
model.load_state_dict(torch.load('cifar10_model.pth'))
|
|
model.eval()
|
|
except:
|
|
model = train_model()
|
|
torch.save(model.state_dict(), 'cifar10_model.pth')
|
|
return model
|
|
|
|
|
|
st.markdown("<h1 class='stHeader'>CIFAR-10 Image Classification</h1>", unsafe_allow_html=True)
|
|
st.write("Upload an image to classify it into one of the CIFAR-10 categories.")
|
|
|
|
|
|
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
|
|
|
if uploaded_file is not None:
|
|
|
|
image = Image.open(uploaded_file)
|
|
st.markdown("<div class='stImage'>", unsafe_allow_html=True)
|
|
st.image(image, caption='Uploaded Image', use_column_width=True)
|
|
st.markdown("</div>", unsafe_allow_html=True)
|
|
|
|
|
|
if st.button('Classify Image'):
|
|
|
|
model = get_model()
|
|
|
|
|
|
transform = transforms.Compose([
|
|
transforms.Resize((32, 32)),
|
|
transforms.ToTensor(),
|
|
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
|
|
])
|
|
input_tensor = transform(image).unsqueeze(0)
|
|
|
|
|
|
with torch.no_grad():
|
|
output = model(input_tensor)
|
|
_, predicted = torch.max(output, 1)
|
|
|
|
|
|
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
|
|
st.markdown(f"<div class='stSuccess'>Prediction: {classes[predicted.item()]}</div>", unsafe_allow_html=True)
|
|
|
|
|
|
st.markdown("---")
|
|
st.markdown("<p style='text-align: center; color: #666;'>Created with Streamlit and PyTorch</p>", unsafe_allow_html=True) |