File size: 12,360 Bytes
b650c29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
import streamlit as st
import cv2
from PIL import Image, ImageEnhance
import numpy as np
import time
from skimage.metrics import structural_similarity as ssim
import base64
from datetime import datetime
import torch

# Load pre-trained YOLOv5 model for object detection
@st.cache_resource
def load_yolo_model():
    model = torch.hub.load('ultralytics/yolov5', 'yolov5s')
    return model

def load_css():
    st.markdown("""
        <style>
        @import url('https://fonts.googleapis.com/css2?family=Inter:wght@400;500;600&display=swap');
        
        .stApp {
            background: linear-gradient(135deg, #1a1a1a 0%, #2d2d2d 100%);
            font-family: 'Inter', sans-serif;
            color: #e0e0e0;
        }
        
        .main {
            padding: 2rem;
            max-width: 1200px;
            margin: 0 auto;
        }
        
        .stButton>button {
            background: linear-gradient(135deg, #2196F3 0%, #1976D2 100%);
            color: white;
            padding: 0.75rem 1.5rem;
            border-radius: 10px;
            border: none;
            box-shadow: 0 4px 6px rgba(0,0,0,0.2);
            transition: all 0.3s ease;
            font-weight: 500;
            letter-spacing: 0.5px;
        }
        
        .stButton>button:hover {
            transform: translateY(-2px);
            box-shadow: 0 6px 12px rgba(0,0,0,0.3);
        }
        
        .upload-container {
            background: #2d2d2d;
            border-radius: 15px;
            padding: 1.5rem;
            box-shadow: 0 4px 6px rgba(0,0,0,0.2);
            transition: all 0.3s ease;
            margin-bottom: 1rem;
        }
        
        .upload-container:hover {
            box-shadow: 0 6px 12px rgba(0,0,0,0.3);
        }
        
        .upload-box {
            border: 2px dashed #404040;
            border-radius: 12px;
            padding: 2rem;
            text-align: center;
            background: #333333;
            transition: all 0.3s ease;
            cursor: pointer;
        }
        
        .upload-box:hover {
            border-color: #2196F3;
            background: #383838;
        }
        
        .results-container {
            background: #2d2d2d;
            border-radius: 15px;
            padding: 2rem;
            box-shadow: 0 4px 6px rgba(0,0,0,0.2);
            color: #e0e0e0;
        }
        
        .metric-card {
            background: #333333;
            border-radius: 10px;
            padding: 1rem;
            margin: 0.5rem 0;
            border-left: 4px solid #2196F3;
            color: #e0e0e0;
        }
        
        .stProgress > div > div {
            background: linear-gradient(90deg, #2196F3, #64B5F6);
            border-radius: 10px;
        }
        
        @keyframes pulse {
            0% { opacity: 1; }
            50% { opacity: 0.5; }
            100% { opacity: 1; }
        }
        
        .loading {
            animation: pulse 1.5s infinite;
        }
        </style>
    """, unsafe_allow_html=True)

def enhance_image(image):
    """
    Basic image enhancement with default settings
    """
    enhancer = ImageEnhance.Brightness(image)
    image = enhancer.enhance(1.0)
    enhancer = ImageEnhance.Contrast(image)
    image = enhancer.enhance(1.0)
    enhancer = ImageEnhance.Sharpness(image)
    image = enhancer.enhance(1.0)
    return image

def compare_images(img1, img2, progress_bar):
    """
    Compare two images and return the processed image, similarity score, and difference percentage
    """
    try:
        progress_bar.progress(0)
        
        # Convert images to numpy arrays and ensure same size
        img1 = np.array(img1.resize(img2.size))
        img2 = np.array(img2)
        progress_bar.progress(20)
        
        # Normalize images
        img1 = cv2.normalize(img1, None, 0, 255, cv2.NORM_MINMAX)
        img2 = cv2.normalize(img2, None, 0, 255, cv2.NORM_MINMAX)
        
        # Convert to grayscale
        gray1 = cv2.cvtColor(img1, cv2.COLOR_RGB2GRAY)
        gray2 = cv2.cvtColor(img2, cv2.COLOR_RGB2GRAY)
        progress_bar.progress(40)
        
        # Calculate SSIM
        score, diff = ssim(gray1, gray2, full=True)
        progress_bar.progress(60)
        
        # Generate heatmap
        diff = (diff * 255).astype(np.uint8)
        heatmap = cv2.applyColorMap(diff, cv2.COLORMAP_JET)
        progress_bar.progress(80)
        
        # Highlight differences in red color
        diff_mask = cv2.absdiff(gray1, gray2)
        diff_mask = cv2.cvtColor(diff_mask, cv2.COLOR_GRAY2RGB)
        diff_mask[np.where((diff_mask == [255, 255, 255]).all(axis=2))] = [0, 0, 255]  # Red color for differences
        
        # Combine original image with difference mask
        result_img = cv2.addWeighted(img1, 0.7, diff_mask, 0.3, 0)
        
        # Calculate pixel-wise differences
        diff_percentage = (np.count_nonzero(diff_mask[:, :, 2] > 0) / (diff_mask.shape[0] * diff_mask.shape[1])) * 100
        
        # Ensure that the difference percentage is consistent with the similarity score
        diff_percentage = 100 - (score * 100)
        
        progress_bar.progress(100)
        
        return result_img, score, diff_percentage, heatmap
        
    except Exception as e:
        st.error(f"Error comparing images: {str(e)}")
        return None, 0, 0, None

def detect_objects(image, model):
    """
    Perform object detection on the image using YOLOv5
    """
    try:
        results = model(image)
        results_df = results.pandas().xyxy[0]
        return results_df
    except Exception as e:
        st.error(f"Error in object detection: {str(e)}")
        return None

def draw_object_boxes(image, objects_df):
    """
    Draw bounding boxes on the image for detected objects
    """
    for _, row in objects_df.iterrows():
        xmin, ymin, xmax, ymax, confidence, class_name = int(row['xmin']), int(row['ymin']), int(row['xmax']), int(row['ymax']), row['confidence'], row['name']
        # Draw bounding box
        cv2.rectangle(image, (xmin, ymin), (xmax, ymax), (0, 255, 0), 2)
        # Add label
        cv2.putText(image, f"{class_name} {confidence:.2f}", (xmin, ymin - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
    return image

def main():
    load_css()
    
    # Initialize session state for results
    if "results" not in st.session_state:
        st.session_state.results = None
    
    # Load YOLOv5 model
    yolo_model = load_yolo_model()
    
    # App header
    st.markdown("""
        <div style='text-align: center; margin-bottom: 2rem; background: linear-gradient(135deg, #2196F3 0%, #1976D2 100%); padding: 2rem; border-radius: 15px; color: white;'>
            <h1 style='margin: 0;'>πŸ” Image Comparison Tool</h1>
            <p style='margin: 1rem 0 0 0; opacity: 0.9;'>Compare images, highlight differences, and detect objects</p>
        </div>
    """, unsafe_allow_html=True)
    
    # Main content for image upload and display
    st.markdown("<div class='upload-container'>", unsafe_allow_html=True)
    st.markdown("### πŸ“ Upload Images")
    
    col1, col2 = st.columns(2)
    
    # Reference Image Upload
    with col1:
        reference_image = st.file_uploader(
            "Drop or select reference image",
            type=["jpg", "jpeg", "png"],
            key="reference"
        )
        if reference_image:
            img1 = Image.open(reference_image)
            img1 = enhance_image(img1)
            st.image(img1, caption="Reference Image", use_column_width=True)
            # Clear previous results when a new image is uploaded
            st.session_state.results = None
    
    # New Image Upload
    with col2:
        new_image = st.file_uploader(
            "Drop or select comparison image",
            type=["jpg", "jpeg", "png"],
            key="new"
        )
        if new_image:
            img2 = Image.open(new_image)
            img2 = enhance_image(img2)
            st.image(img2, caption="Comparison Image", use_column_width=True)
            # Clear previous results when a new image is uploaded
            st.session_state.results = None
    
    st.markdown("</div>", unsafe_allow_html=True)
    
    # Sidebar for results and download
    st.sidebar.markdown("### 🎯 Analysis Results")
    
    if reference_image and new_image:
        compare_button = st.sidebar.button("πŸ” Analyze Images", use_container_width=True)
        
        if compare_button or st.session_state.results:
            if not st.session_state.results:
                with st.spinner("Processing images..."):
                    progress_bar = st.sidebar.progress(0)
                    
                    start_time = time.time()
                    result_img, score, diff_percentage, heatmap = compare_images(img1, img2, progress_bar)
                    processing_time = time.time() - start_time
                    
                    # Perform object detection
                    objects_df = detect_objects(result_img, yolo_model)
                    
                    # Draw bounding boxes on the analyzed image
                    if objects_df is not None:
                        result_img = draw_object_boxes(result_img, objects_df)
                    
                    # Store results in session state
                    st.session_state.results = {
                        "result_img": result_img,
                        "heatmap": heatmap,
                        "score": score,
                        "diff_percentage": diff_percentage,
                        "processing_time": processing_time,
                        "objects_df": objects_df
                    }
            
            # Display analyzed image (processed image with differences highlighted) in sidebar
            st.sidebar.image(st.session_state.results["result_img"], caption="Analyzed Image (Differences Highlighted)", use_column_width=True)
            
            # Display heatmap in sidebar
            st.sidebar.image(st.session_state.results["heatmap"], caption="Heatmap", use_column_width=True)
            
            # Display metrics in sidebar
            st.sidebar.markdown("### πŸ“Š Metrics")
            st.sidebar.markdown(f"""
                <div class='metric-card'>
                    <h4>Similarity Score</h4>
                    <h2 style='color: #2196F3'>{st.session_state.results["score"]:.2%}</h2>
                </div>
            """, unsafe_allow_html=True)
            
            st.sidebar.markdown(f"""
                <div class='metric-card'>
                    <h4>Difference Detected</h4>
                    <h2 style='color: #2196F3'>{st.session_state.results["diff_percentage"]:.2f}%</h2>
                </div>
            """, unsafe_allow_html=True)
            
            st.sidebar.markdown(f"""
                <div class='metric-card'>
                    <h4>Processing Time</h4>
                    <h2 style='color: #2196F3'>{st.session_state.results["processing_time"]:.2f}s</h2>
                </div>
            """, unsafe_allow_html=True)
            
            # Display detected objects
            if st.session_state.results["objects_df"] is not None:
                st.sidebar.markdown("### πŸ” Detected Objects")
                st.sidebar.dataframe(st.session_state.results["objects_df"])
            
            # Download analyzed image
            st.sidebar.markdown("### πŸ“₯ Download Analyzed Image")
            st.sidebar.download_button(
                "Download Analyzed Image",
                data=cv2.imencode('.png', cv2.cvtColor(st.session_state.results["result_img"], cv2.COLOR_RGB2BGR))[1].tobytes(),
                file_name=f"analyzed_image_{datetime.now().strftime('%Y%m%d_%H%M%S')}.png",
                mime="image/png"
            )
    
    # Footer
    st.markdown("""
        <div style='text-align: center; margin-top: 2rem; padding: 1rem; background: #2d2d2d; border-radius: 10px; box-shadow: 0 4px 6px rgba(0,0,0,0.2);'>
            <p style='color: #888; margin: 0;'>Built with ❀️ using Streamlit | Last updated: December 2024</p>
            <p style='color: #888; font-size: 0.9em; margin: 0.5rem 0 0 0;'>Image Comparison Tool v1.0</p>
        </div>
    """, unsafe_allow_html=True)

if __name__ == "__main__":
    main()