rajsecrets0's picture
Create app.py
b650c29 verified
import streamlit as st
import cv2
from PIL import Image, ImageEnhance
import numpy as np
import time
from skimage.metrics import structural_similarity as ssim
import base64
from datetime import datetime
import torch
# Load pre-trained YOLOv5 model for object detection
@st.cache_resource
def load_yolo_model():
model = torch.hub.load('ultralytics/yolov5', 'yolov5s')
return model
def load_css():
st.markdown("""
<style>
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@400;500;600&display=swap');
.stApp {
background: linear-gradient(135deg, #1a1a1a 0%, #2d2d2d 100%);
font-family: 'Inter', sans-serif;
color: #e0e0e0;
}
.main {
padding: 2rem;
max-width: 1200px;
margin: 0 auto;
}
.stButton>button {
background: linear-gradient(135deg, #2196F3 0%, #1976D2 100%);
color: white;
padding: 0.75rem 1.5rem;
border-radius: 10px;
border: none;
box-shadow: 0 4px 6px rgba(0,0,0,0.2);
transition: all 0.3s ease;
font-weight: 500;
letter-spacing: 0.5px;
}
.stButton>button:hover {
transform: translateY(-2px);
box-shadow: 0 6px 12px rgba(0,0,0,0.3);
}
.upload-container {
background: #2d2d2d;
border-radius: 15px;
padding: 1.5rem;
box-shadow: 0 4px 6px rgba(0,0,0,0.2);
transition: all 0.3s ease;
margin-bottom: 1rem;
}
.upload-container:hover {
box-shadow: 0 6px 12px rgba(0,0,0,0.3);
}
.upload-box {
border: 2px dashed #404040;
border-radius: 12px;
padding: 2rem;
text-align: center;
background: #333333;
transition: all 0.3s ease;
cursor: pointer;
}
.upload-box:hover {
border-color: #2196F3;
background: #383838;
}
.results-container {
background: #2d2d2d;
border-radius: 15px;
padding: 2rem;
box-shadow: 0 4px 6px rgba(0,0,0,0.2);
color: #e0e0e0;
}
.metric-card {
background: #333333;
border-radius: 10px;
padding: 1rem;
margin: 0.5rem 0;
border-left: 4px solid #2196F3;
color: #e0e0e0;
}
.stProgress > div > div {
background: linear-gradient(90deg, #2196F3, #64B5F6);
border-radius: 10px;
}
@keyframes pulse {
0% { opacity: 1; }
50% { opacity: 0.5; }
100% { opacity: 1; }
}
.loading {
animation: pulse 1.5s infinite;
}
</style>
""", unsafe_allow_html=True)
def enhance_image(image):
"""
Basic image enhancement with default settings
"""
enhancer = ImageEnhance.Brightness(image)
image = enhancer.enhance(1.0)
enhancer = ImageEnhance.Contrast(image)
image = enhancer.enhance(1.0)
enhancer = ImageEnhance.Sharpness(image)
image = enhancer.enhance(1.0)
return image
def compare_images(img1, img2, progress_bar):
"""
Compare two images and return the processed image, similarity score, and difference percentage
"""
try:
progress_bar.progress(0)
# Convert images to numpy arrays and ensure same size
img1 = np.array(img1.resize(img2.size))
img2 = np.array(img2)
progress_bar.progress(20)
# Normalize images
img1 = cv2.normalize(img1, None, 0, 255, cv2.NORM_MINMAX)
img2 = cv2.normalize(img2, None, 0, 255, cv2.NORM_MINMAX)
# Convert to grayscale
gray1 = cv2.cvtColor(img1, cv2.COLOR_RGB2GRAY)
gray2 = cv2.cvtColor(img2, cv2.COLOR_RGB2GRAY)
progress_bar.progress(40)
# Calculate SSIM
score, diff = ssim(gray1, gray2, full=True)
progress_bar.progress(60)
# Generate heatmap
diff = (diff * 255).astype(np.uint8)
heatmap = cv2.applyColorMap(diff, cv2.COLORMAP_JET)
progress_bar.progress(80)
# Highlight differences in red color
diff_mask = cv2.absdiff(gray1, gray2)
diff_mask = cv2.cvtColor(diff_mask, cv2.COLOR_GRAY2RGB)
diff_mask[np.where((diff_mask == [255, 255, 255]).all(axis=2))] = [0, 0, 255] # Red color for differences
# Combine original image with difference mask
result_img = cv2.addWeighted(img1, 0.7, diff_mask, 0.3, 0)
# Calculate pixel-wise differences
diff_percentage = (np.count_nonzero(diff_mask[:, :, 2] > 0) / (diff_mask.shape[0] * diff_mask.shape[1])) * 100
# Ensure that the difference percentage is consistent with the similarity score
diff_percentage = 100 - (score * 100)
progress_bar.progress(100)
return result_img, score, diff_percentage, heatmap
except Exception as e:
st.error(f"Error comparing images: {str(e)}")
return None, 0, 0, None
def detect_objects(image, model):
"""
Perform object detection on the image using YOLOv5
"""
try:
results = model(image)
results_df = results.pandas().xyxy[0]
return results_df
except Exception as e:
st.error(f"Error in object detection: {str(e)}")
return None
def draw_object_boxes(image, objects_df):
"""
Draw bounding boxes on the image for detected objects
"""
for _, row in objects_df.iterrows():
xmin, ymin, xmax, ymax, confidence, class_name = int(row['xmin']), int(row['ymin']), int(row['xmax']), int(row['ymax']), row['confidence'], row['name']
# Draw bounding box
cv2.rectangle(image, (xmin, ymin), (xmax, ymax), (0, 255, 0), 2)
# Add label
cv2.putText(image, f"{class_name} {confidence:.2f}", (xmin, ymin - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
return image
def main():
load_css()
# Initialize session state for results
if "results" not in st.session_state:
st.session_state.results = None
# Load YOLOv5 model
yolo_model = load_yolo_model()
# App header
st.markdown("""
<div style='text-align: center; margin-bottom: 2rem; background: linear-gradient(135deg, #2196F3 0%, #1976D2 100%); padding: 2rem; border-radius: 15px; color: white;'>
<h1 style='margin: 0;'>πŸ” Image Comparison Tool</h1>
<p style='margin: 1rem 0 0 0; opacity: 0.9;'>Compare images, highlight differences, and detect objects</p>
</div>
""", unsafe_allow_html=True)
# Main content for image upload and display
st.markdown("<div class='upload-container'>", unsafe_allow_html=True)
st.markdown("### πŸ“ Upload Images")
col1, col2 = st.columns(2)
# Reference Image Upload
with col1:
reference_image = st.file_uploader(
"Drop or select reference image",
type=["jpg", "jpeg", "png"],
key="reference"
)
if reference_image:
img1 = Image.open(reference_image)
img1 = enhance_image(img1)
st.image(img1, caption="Reference Image", use_column_width=True)
# Clear previous results when a new image is uploaded
st.session_state.results = None
# New Image Upload
with col2:
new_image = st.file_uploader(
"Drop or select comparison image",
type=["jpg", "jpeg", "png"],
key="new"
)
if new_image:
img2 = Image.open(new_image)
img2 = enhance_image(img2)
st.image(img2, caption="Comparison Image", use_column_width=True)
# Clear previous results when a new image is uploaded
st.session_state.results = None
st.markdown("</div>", unsafe_allow_html=True)
# Sidebar for results and download
st.sidebar.markdown("### 🎯 Analysis Results")
if reference_image and new_image:
compare_button = st.sidebar.button("πŸ” Analyze Images", use_container_width=True)
if compare_button or st.session_state.results:
if not st.session_state.results:
with st.spinner("Processing images..."):
progress_bar = st.sidebar.progress(0)
start_time = time.time()
result_img, score, diff_percentage, heatmap = compare_images(img1, img2, progress_bar)
processing_time = time.time() - start_time
# Perform object detection
objects_df = detect_objects(result_img, yolo_model)
# Draw bounding boxes on the analyzed image
if objects_df is not None:
result_img = draw_object_boxes(result_img, objects_df)
# Store results in session state
st.session_state.results = {
"result_img": result_img,
"heatmap": heatmap,
"score": score,
"diff_percentage": diff_percentage,
"processing_time": processing_time,
"objects_df": objects_df
}
# Display analyzed image (processed image with differences highlighted) in sidebar
st.sidebar.image(st.session_state.results["result_img"], caption="Analyzed Image (Differences Highlighted)", use_column_width=True)
# Display heatmap in sidebar
st.sidebar.image(st.session_state.results["heatmap"], caption="Heatmap", use_column_width=True)
# Display metrics in sidebar
st.sidebar.markdown("### πŸ“Š Metrics")
st.sidebar.markdown(f"""
<div class='metric-card'>
<h4>Similarity Score</h4>
<h2 style='color: #2196F3'>{st.session_state.results["score"]:.2%}</h2>
</div>
""", unsafe_allow_html=True)
st.sidebar.markdown(f"""
<div class='metric-card'>
<h4>Difference Detected</h4>
<h2 style='color: #2196F3'>{st.session_state.results["diff_percentage"]:.2f}%</h2>
</div>
""", unsafe_allow_html=True)
st.sidebar.markdown(f"""
<div class='metric-card'>
<h4>Processing Time</h4>
<h2 style='color: #2196F3'>{st.session_state.results["processing_time"]:.2f}s</h2>
</div>
""", unsafe_allow_html=True)
# Display detected objects
if st.session_state.results["objects_df"] is not None:
st.sidebar.markdown("### πŸ” Detected Objects")
st.sidebar.dataframe(st.session_state.results["objects_df"])
# Download analyzed image
st.sidebar.markdown("### πŸ“₯ Download Analyzed Image")
st.sidebar.download_button(
"Download Analyzed Image",
data=cv2.imencode('.png', cv2.cvtColor(st.session_state.results["result_img"], cv2.COLOR_RGB2BGR))[1].tobytes(),
file_name=f"analyzed_image_{datetime.now().strftime('%Y%m%d_%H%M%S')}.png",
mime="image/png"
)
# Footer
st.markdown("""
<div style='text-align: center; margin-top: 2rem; padding: 1rem; background: #2d2d2d; border-radius: 10px; box-shadow: 0 4px 6px rgba(0,0,0,0.2);'>
<p style='color: #888; margin: 0;'>Built with ❀️ using Streamlit | Last updated: December 2024</p>
<p style='color: #888; font-size: 0.9em; margin: 0.5rem 0 0 0;'>Image Comparison Tool v1.0</p>
</div>
""", unsafe_allow_html=True)
if __name__ == "__main__":
main()