Spaces:
Runtime error
Runtime error
import streamlit as st | |
import cv2 | |
from PIL import Image, ImageEnhance | |
import numpy as np | |
import time | |
from skimage.metrics import structural_similarity as ssim | |
import base64 | |
from datetime import datetime | |
import torch | |
# Load pre-trained YOLOv5 model for object detection | |
def load_yolo_model(): | |
model = torch.hub.load('ultralytics/yolov5', 'yolov5s') | |
return model | |
def load_css(): | |
st.markdown(""" | |
<style> | |
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@400;500;600&display=swap'); | |
.stApp { | |
background: linear-gradient(135deg, #1a1a1a 0%, #2d2d2d 100%); | |
font-family: 'Inter', sans-serif; | |
color: #e0e0e0; | |
} | |
.main { | |
padding: 2rem; | |
max-width: 1200px; | |
margin: 0 auto; | |
} | |
.stButton>button { | |
background: linear-gradient(135deg, #2196F3 0%, #1976D2 100%); | |
color: white; | |
padding: 0.75rem 1.5rem; | |
border-radius: 10px; | |
border: none; | |
box-shadow: 0 4px 6px rgba(0,0,0,0.2); | |
transition: all 0.3s ease; | |
font-weight: 500; | |
letter-spacing: 0.5px; | |
} | |
.stButton>button:hover { | |
transform: translateY(-2px); | |
box-shadow: 0 6px 12px rgba(0,0,0,0.3); | |
} | |
.upload-container { | |
background: #2d2d2d; | |
border-radius: 15px; | |
padding: 1.5rem; | |
box-shadow: 0 4px 6px rgba(0,0,0,0.2); | |
transition: all 0.3s ease; | |
margin-bottom: 1rem; | |
} | |
.upload-container:hover { | |
box-shadow: 0 6px 12px rgba(0,0,0,0.3); | |
} | |
.upload-box { | |
border: 2px dashed #404040; | |
border-radius: 12px; | |
padding: 2rem; | |
text-align: center; | |
background: #333333; | |
transition: all 0.3s ease; | |
cursor: pointer; | |
} | |
.upload-box:hover { | |
border-color: #2196F3; | |
background: #383838; | |
} | |
.results-container { | |
background: #2d2d2d; | |
border-radius: 15px; | |
padding: 2rem; | |
box-shadow: 0 4px 6px rgba(0,0,0,0.2); | |
color: #e0e0e0; | |
} | |
.metric-card { | |
background: #333333; | |
border-radius: 10px; | |
padding: 1rem; | |
margin: 0.5rem 0; | |
border-left: 4px solid #2196F3; | |
color: #e0e0e0; | |
} | |
.stProgress > div > div { | |
background: linear-gradient(90deg, #2196F3, #64B5F6); | |
border-radius: 10px; | |
} | |
@keyframes pulse { | |
0% { opacity: 1; } | |
50% { opacity: 0.5; } | |
100% { opacity: 1; } | |
} | |
.loading { | |
animation: pulse 1.5s infinite; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
def enhance_image(image): | |
""" | |
Basic image enhancement with default settings | |
""" | |
enhancer = ImageEnhance.Brightness(image) | |
image = enhancer.enhance(1.0) | |
enhancer = ImageEnhance.Contrast(image) | |
image = enhancer.enhance(1.0) | |
enhancer = ImageEnhance.Sharpness(image) | |
image = enhancer.enhance(1.0) | |
return image | |
def compare_images(img1, img2, progress_bar): | |
""" | |
Compare two images and return the processed image, similarity score, and difference percentage | |
""" | |
try: | |
progress_bar.progress(0) | |
# Convert images to numpy arrays and ensure same size | |
img1 = np.array(img1.resize(img2.size)) | |
img2 = np.array(img2) | |
progress_bar.progress(20) | |
# Normalize images | |
img1 = cv2.normalize(img1, None, 0, 255, cv2.NORM_MINMAX) | |
img2 = cv2.normalize(img2, None, 0, 255, cv2.NORM_MINMAX) | |
# Convert to grayscale | |
gray1 = cv2.cvtColor(img1, cv2.COLOR_RGB2GRAY) | |
gray2 = cv2.cvtColor(img2, cv2.COLOR_RGB2GRAY) | |
progress_bar.progress(40) | |
# Calculate SSIM | |
score, diff = ssim(gray1, gray2, full=True) | |
progress_bar.progress(60) | |
# Generate heatmap | |
diff = (diff * 255).astype(np.uint8) | |
heatmap = cv2.applyColorMap(diff, cv2.COLORMAP_JET) | |
progress_bar.progress(80) | |
# Highlight differences in red color | |
diff_mask = cv2.absdiff(gray1, gray2) | |
diff_mask = cv2.cvtColor(diff_mask, cv2.COLOR_GRAY2RGB) | |
diff_mask[np.where((diff_mask == [255, 255, 255]).all(axis=2))] = [0, 0, 255] # Red color for differences | |
# Combine original image with difference mask | |
result_img = cv2.addWeighted(img1, 0.7, diff_mask, 0.3, 0) | |
# Calculate pixel-wise differences | |
diff_percentage = (np.count_nonzero(diff_mask[:, :, 2] > 0) / (diff_mask.shape[0] * diff_mask.shape[1])) * 100 | |
# Ensure that the difference percentage is consistent with the similarity score | |
diff_percentage = 100 - (score * 100) | |
progress_bar.progress(100) | |
return result_img, score, diff_percentage, heatmap | |
except Exception as e: | |
st.error(f"Error comparing images: {str(e)}") | |
return None, 0, 0, None | |
def detect_objects(image, model): | |
""" | |
Perform object detection on the image using YOLOv5 | |
""" | |
try: | |
results = model(image) | |
results_df = results.pandas().xyxy[0] | |
return results_df | |
except Exception as e: | |
st.error(f"Error in object detection: {str(e)}") | |
return None | |
def draw_object_boxes(image, objects_df): | |
""" | |
Draw bounding boxes on the image for detected objects | |
""" | |
for _, row in objects_df.iterrows(): | |
xmin, ymin, xmax, ymax, confidence, class_name = int(row['xmin']), int(row['ymin']), int(row['xmax']), int(row['ymax']), row['confidence'], row['name'] | |
# Draw bounding box | |
cv2.rectangle(image, (xmin, ymin), (xmax, ymax), (0, 255, 0), 2) | |
# Add label | |
cv2.putText(image, f"{class_name} {confidence:.2f}", (xmin, ymin - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2) | |
return image | |
def main(): | |
load_css() | |
# Initialize session state for results | |
if "results" not in st.session_state: | |
st.session_state.results = None | |
# Load YOLOv5 model | |
yolo_model = load_yolo_model() | |
# App header | |
st.markdown(""" | |
<div style='text-align: center; margin-bottom: 2rem; background: linear-gradient(135deg, #2196F3 0%, #1976D2 100%); padding: 2rem; border-radius: 15px; color: white;'> | |
<h1 style='margin: 0;'>π Image Comparison Tool</h1> | |
<p style='margin: 1rem 0 0 0; opacity: 0.9;'>Compare images, highlight differences, and detect objects</p> | |
</div> | |
""", unsafe_allow_html=True) | |
# Main content for image upload and display | |
st.markdown("<div class='upload-container'>", unsafe_allow_html=True) | |
st.markdown("### π Upload Images") | |
col1, col2 = st.columns(2) | |
# Reference Image Upload | |
with col1: | |
reference_image = st.file_uploader( | |
"Drop or select reference image", | |
type=["jpg", "jpeg", "png"], | |
key="reference" | |
) | |
if reference_image: | |
img1 = Image.open(reference_image) | |
img1 = enhance_image(img1) | |
st.image(img1, caption="Reference Image", use_column_width=True) | |
# Clear previous results when a new image is uploaded | |
st.session_state.results = None | |
# New Image Upload | |
with col2: | |
new_image = st.file_uploader( | |
"Drop or select comparison image", | |
type=["jpg", "jpeg", "png"], | |
key="new" | |
) | |
if new_image: | |
img2 = Image.open(new_image) | |
img2 = enhance_image(img2) | |
st.image(img2, caption="Comparison Image", use_column_width=True) | |
# Clear previous results when a new image is uploaded | |
st.session_state.results = None | |
st.markdown("</div>", unsafe_allow_html=True) | |
# Sidebar for results and download | |
st.sidebar.markdown("### π― Analysis Results") | |
if reference_image and new_image: | |
compare_button = st.sidebar.button("π Analyze Images", use_container_width=True) | |
if compare_button or st.session_state.results: | |
if not st.session_state.results: | |
with st.spinner("Processing images..."): | |
progress_bar = st.sidebar.progress(0) | |
start_time = time.time() | |
result_img, score, diff_percentage, heatmap = compare_images(img1, img2, progress_bar) | |
processing_time = time.time() - start_time | |
# Perform object detection | |
objects_df = detect_objects(result_img, yolo_model) | |
# Draw bounding boxes on the analyzed image | |
if objects_df is not None: | |
result_img = draw_object_boxes(result_img, objects_df) | |
# Store results in session state | |
st.session_state.results = { | |
"result_img": result_img, | |
"heatmap": heatmap, | |
"score": score, | |
"diff_percentage": diff_percentage, | |
"processing_time": processing_time, | |
"objects_df": objects_df | |
} | |
# Display analyzed image (processed image with differences highlighted) in sidebar | |
st.sidebar.image(st.session_state.results["result_img"], caption="Analyzed Image (Differences Highlighted)", use_column_width=True) | |
# Display heatmap in sidebar | |
st.sidebar.image(st.session_state.results["heatmap"], caption="Heatmap", use_column_width=True) | |
# Display metrics in sidebar | |
st.sidebar.markdown("### π Metrics") | |
st.sidebar.markdown(f""" | |
<div class='metric-card'> | |
<h4>Similarity Score</h4> | |
<h2 style='color: #2196F3'>{st.session_state.results["score"]:.2%}</h2> | |
</div> | |
""", unsafe_allow_html=True) | |
st.sidebar.markdown(f""" | |
<div class='metric-card'> | |
<h4>Difference Detected</h4> | |
<h2 style='color: #2196F3'>{st.session_state.results["diff_percentage"]:.2f}%</h2> | |
</div> | |
""", unsafe_allow_html=True) | |
st.sidebar.markdown(f""" | |
<div class='metric-card'> | |
<h4>Processing Time</h4> | |
<h2 style='color: #2196F3'>{st.session_state.results["processing_time"]:.2f}s</h2> | |
</div> | |
""", unsafe_allow_html=True) | |
# Display detected objects | |
if st.session_state.results["objects_df"] is not None: | |
st.sidebar.markdown("### π Detected Objects") | |
st.sidebar.dataframe(st.session_state.results["objects_df"]) | |
# Download analyzed image | |
st.sidebar.markdown("### π₯ Download Analyzed Image") | |
st.sidebar.download_button( | |
"Download Analyzed Image", | |
data=cv2.imencode('.png', cv2.cvtColor(st.session_state.results["result_img"], cv2.COLOR_RGB2BGR))[1].tobytes(), | |
file_name=f"analyzed_image_{datetime.now().strftime('%Y%m%d_%H%M%S')}.png", | |
mime="image/png" | |
) | |
# Footer | |
st.markdown(""" | |
<div style='text-align: center; margin-top: 2rem; padding: 1rem; background: #2d2d2d; border-radius: 10px; box-shadow: 0 4px 6px rgba(0,0,0,0.2);'> | |
<p style='color: #888; margin: 0;'>Built with β€οΈ using Streamlit | Last updated: December 2024</p> | |
<p style='color: #888; font-size: 0.9em; margin: 0.5rem 0 0 0;'>Image Comparison Tool v1.0</p> | |
</div> | |
""", unsafe_allow_html=True) | |
if __name__ == "__main__": | |
main() |