data_gen / app.py
ramalMr's picture
Update app.py
57e7335 verified
raw
history blame
3.39 kB
from huggingface_hub import InferenceClient
import gradio as gr
import random
import pandas as pd
import csv
import tempfile
import re
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
def extract_text_from_excel(file, column_name):
df = pd.read_excel(file)
text = ' '.join(df[column_name].astype(str))
return text
def generate(file, column_name, temperature, max_new_tokens, top_p, repetition_penalty, num_similar_sentences):
text = extract_text_from_excel(file, column_name)
sentences = text.split('.')
random.shuffle(sentences) # Shuffle sentences
with tempfile.NamedTemporaryFile(mode='w', newline='', delete=False, suffix='.csv') as tmp:
fieldnames = ['Original Sentence', 'Generated Sentence']
writer = csv.DictWriter(tmp, fieldnames=fieldnames)
writer.writeheader()
for sentence in sentences:
sentence = sentence.strip()
if not sentence:
continue
generate_kwargs = {
"temperature": temperature,
"max_new_tokens": max_new_tokens,
"top_p": top_p,
"repetition_penalty": repetition_penalty,
"do_sample": True,
"seed": 42,
}
try:
stream = client.text_generation(sentence, **generate_kwargs, stream=True, return_full_text=False)
output = ""
for response in stream:
output += response.text
generated_sentences = re.split(r'(?<=[\.\!\?:])[\s\n]+', output)
generated_sentences = [s.strip() for s in generated_sentences if s.strip() and s != '.']
for _ in range(num_similar_sentences):
if not generated_sentences:
break
generated_sentence = generated_sentences.pop(random.randrange(len(generated_sentences)))
writer.writerow({'Original Sentence': sentence, 'Generated Sentence': generated_sentence})
except Exception as e:
print(f"Error generating data for sentence '{sentence}': {e}")
tmp_path = tmp.name
return tmp_path
gr.Interface(
fn=generate,
inputs=[
gr.File(label="Upload Excel File", file_count="single", file_types=[".xlsx"]),
gr.TextAreaInput(label="Column Name", placeholder="Enter the column name"),
gr.Slider(label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs"),
gr.Slider(label="Max new tokens", value=256, minimum=0, maximum=5120, step=64, interactive=True, info="The maximum numbers of new tokens"),
gr.Slider(label="Top-p (nucleus sampling)", value=0.95, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens"),
gr.Slider(label="Repetition penalty", value=1.0, minimum=1.0, maximum=2.0, step=0.1, interactive=True, info="Penalize repeated tokens"),
gr.Slider(label="Number of similar sentences", value=10, minimum=1, maximum=20, step=1, interactive=True, info="Number of similar sentences to generate for each original sentence"),
],
outputs=gr.File(label="Synthetic Data "),
title="SDG",
description="AYE QABIL.",
allow_flagging="never",
).launch()