|
import json |
|
from huggingface_hub import InferenceClient |
|
import gradio as gr |
|
import PyPDF2 |
|
import random |
|
import pandas as pd |
|
from io import BytesIO |
|
import csv |
|
import os |
|
import io |
|
import tempfile |
|
import re |
|
|
|
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") |
|
|
|
def extract_sentences_from_excel(file): |
|
df = pd.read_excel(file) |
|
text = ' '.join(df['Unnamed: 1'].astype(str)) |
|
sentences = text.split('.') |
|
sentences = [s.strip() for s in sentences if s.strip() and s.strip() != 'nan'] |
|
return sentences |
|
|
|
def save_to_json(data, filename="synthetic_data.json"): |
|
with open(filename, mode='a', encoding='utf-8') as file: |
|
json.dump(data, file, indent=4, ensure_ascii=False) |
|
|
|
def generate(file, prompt, temperature, max_new_tokens, top_p, repetition_penalty): |
|
sentences = extract_sentences_from_excel(file) |
|
data = [] |
|
|
|
with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.json') as tmp: |
|
for sentence in sentences: |
|
sentence = sentence.strip() |
|
if not sentence: |
|
continue |
|
|
|
generate_kwargs = { |
|
"temperature": temperature, |
|
"max_new_tokens": max_new_tokens, |
|
"top_p": top_p, |
|
"repetition_penalty": repetition_penalty, |
|
"do_sample": True, |
|
"seed": 42, |
|
} |
|
|
|
try: |
|
stream = client.text_generation(f"{prompt} Output the response in the following JSON format: {{'generated_sentence': 'The generated sentence text', 'confidence_score': 0.9}}", **generate_kwargs, stream=True, details=True, return_full_text=False) |
|
output = "" |
|
for response in stream: |
|
output += response.token.text |
|
|
|
try: |
|
json_output = json.loads(output) |
|
data.append({"original_sentence": sentence, "generated_data": json_output}) |
|
except json.JSONDecodeError: |
|
print(f"Error decoding JSON for sentence '{sentence}': {output}") |
|
|
|
except Exception as e: |
|
print(f"Error generating data for sentence '{sentence}': {e}") |
|
|
|
save_to_json(data, tmp.name) |
|
tmp_path = tmp.name |
|
|
|
return tmp_path |
|
|
|
gr.Interface( |
|
fn=generate, |
|
inputs=[ |
|
gr.File(label="Upload Excel File", file_count="single", file_types=[".xlsx"]), |
|
gr.Textbox(label="Prompt", placeholder="Enter your prompt here"), |
|
gr.Slider(label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs"), |
|
gr.Slider(label="Max new tokens", value=256, minimum=0, maximum=5120, step=64, interactive=True, info="The maximum numbers of new tokens"), |
|
gr.Slider(label="Top-p (nucleus sampling)", value=0.95, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens"), |
|
gr.Slider(label="Repetition penalty", value=1.0, minimum=1.0, maximum=2.0, step=0.1, interactive=True, info="Penalize repeated tokens"), |
|
], |
|
outputs=gr.File(label="Synthetic Data "), |
|
title="SDG", |
|
description="AYE QABIL.", |
|
allow_flagging="never", |
|
).launch() |