data_gen / app.py
ramalMr's picture
Update app.py
d53066f verified
raw
history blame
3.07 kB
from huggingface_hub import InferenceClient
import gradio as gr
import PyPDF2
import random
import pandas as pd
from io import BytesIO
import csv
import os
import io
import tempfile
# Initialize the inference client with your chosen model
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
def extract_text_from_pdf(file):
pdf_reader = PyPDF2.PdfReader(file)
text = ""
for page in range(len(pdf_reader.pages)):
text += pdf_reader.pages[page].extract_text()
return text
def save_to_csv(sentence, output, filename="synthetic_data.csv"):
with open(filename, mode='a', newline='', encoding='utf-8') as file:
writer = csv.writer(file)
writer.writerow([sentence, output])
def generate(file, temperature, max_new_tokens, top_p, repetition_penalty):
text = extract_text_from_pdf(file)
sentences = text.split('.')
random.shuffle(sentences) # Shuffle sentences
# Geçici dosya oluştur ve CSV yazıcısını başlat
with tempfile.NamedTemporaryFile(mode='w', newline='', delete=False, suffix='.csv') as tmp:
writer = csv.writer(tmp)
for sentence in sentences:
sentence = sentence.strip()
if not sentence:
continue
generate_kwargs = {
"temperature": temperature,
"max_new_tokens": max_new_tokens,
"top_p": top_p,
"repetition_penalty": repetition_penalty,
"do_sample": True,
"seed": 42,
}
try:
stream = client.text_generation(sentence, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
writer.writerow([sentence, output]) # Orijinal cümle ve yanıt CSV'ye yazılır
except Exception as e:
print(f"Error generating data for sentence '{sentence}': {e}")
tmp_path = tmp.name
return tmp_path
gr.Interface(
fn=generate,
inputs=[
gr.File(label="Upload PDF File", file_count="single", file_types=[".pdf"]),
gr.Slider(label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs"),
gr.Slider(label="Max new tokens", value=256, minimum=0, maximum=5120, step=64, interactive=True, info="The maximum numbers of new tokens"),
gr.Slider(label="Top-p (nucleus sampling)", value=0.95, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens"),
gr.Slider(label="Repetition penalty", value=1.0, minimum=1.0, maximum=2.0, step=0.1, interactive=True, info="Penalize repeated tokens"),
],
outputs=gr.File(label="Synthetic Data CSV"),
title="Synthetic Data Generation",
description="This tool generates synthetic data from the sentences in your PDF and saves it to a CSV file.",
allow_flagging="never",
).launch()