File size: 3,074 Bytes
cd650c7
 
a26857e
adba430
 
438b552
fa4d0d9
 
daa6f24
34421df
adba430
 
923f75f
adba430
 
 
 
 
 
 
fa4d0d9
 
 
 
 
34421df
fa4d0d9
 
 
 
 
d53066f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa4d0d9
34421df
 
 
59ef8d0
cd650c7
1fd65af
 
 
 
 
 
 
5b06a47
adba430
fa4d0d9
adba430
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
from huggingface_hub import InferenceClient
import gradio as gr
import PyPDF2
import random
import pandas as pd
from io import BytesIO 
import csv
import os
import io
import tempfile
# Initialize the inference client with your chosen model
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")

def extract_text_from_pdf(file):
    pdf_reader = PyPDF2.PdfReader(file)
    text = ""
    for page in range(len(pdf_reader.pages)):
        text += pdf_reader.pages[page].extract_text()
    return text

def save_to_csv(sentence, output, filename="synthetic_data.csv"):
    with open(filename, mode='a', newline='', encoding='utf-8') as file:
        writer = csv.writer(file)
        writer.writerow([sentence, output])


def generate(file, temperature, max_new_tokens, top_p, repetition_penalty):
    text = extract_text_from_pdf(file)
    sentences = text.split('.')
    random.shuffle(sentences)  # Shuffle sentences

    # Geçici dosya oluştur ve CSV yazıcısını başlat
    with tempfile.NamedTemporaryFile(mode='w', newline='', delete=False, suffix='.csv') as tmp:
        writer = csv.writer(tmp)
        
        for sentence in sentences:
            sentence = sentence.strip()
            if not sentence:
                continue

            generate_kwargs = {
                "temperature": temperature,
                "max_new_tokens": max_new_tokens,
                "top_p": top_p,
                "repetition_penalty": repetition_penalty,
                "do_sample": True,
                "seed": 42,
            }

            try:
                stream = client.text_generation(sentence, **generate_kwargs, stream=True, details=True, return_full_text=False)
                output = ""
                for response in stream:
                    output += response.token.text
                writer.writerow([sentence, output])  # Orijinal cümle ve yanıt CSV'ye yazılır
            except Exception as e:
                print(f"Error generating data for sentence '{sentence}': {e}")

        tmp_path = tmp.name

    return tmp_path
gr.Interface( 
    fn=generate,
    inputs=[
        gr.File(label="Upload PDF File", file_count="single", file_types=[".pdf"]),
        gr.Slider(label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs"),
        gr.Slider(label="Max new tokens", value=256, minimum=0, maximum=5120, step=64, interactive=True, info="The maximum numbers of new tokens"),
        gr.Slider(label="Top-p (nucleus sampling)", value=0.95, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens"),
        gr.Slider(label="Repetition penalty", value=1.0, minimum=1.0, maximum=2.0, step=0.1, interactive=True, info="Penalize repeated tokens"),
    ],
    outputs=gr.File(label="Synthetic Data CSV"),
    title="Synthetic Data Generation",
    description="This tool generates synthetic data from the sentences in your PDF and saves it to a CSV file.",
    allow_flagging="never",
).launch()