Update app.py
Browse files
app.py
CHANGED
@@ -8,14 +8,6 @@ from io import StringIO
|
|
8 |
# Initialize the inference client with your chosen model
|
9 |
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
10 |
|
11 |
-
def format_prompt(message, history):
|
12 |
-
prompt = "<s>"
|
13 |
-
for user_prompt, bot_response in history:
|
14 |
-
prompt += f"[INST] {user_prompt} [/INST]"
|
15 |
-
prompt += f" {bot_response}</s> "
|
16 |
-
prompt += f"[INST] {message} [/INST]"
|
17 |
-
return prompt
|
18 |
-
|
19 |
def extract_text_from_pdf(file):
|
20 |
pdf_reader = PyPDF2.PdfReader(file)
|
21 |
text = ""
|
@@ -23,10 +15,18 @@ def extract_text_from_pdf(file):
|
|
23 |
text += pdf_reader.pages[page].extract_text()
|
24 |
return text
|
25 |
|
26 |
-
def generate_synthetic_data(sentences,
|
27 |
synthetic_data = []
|
28 |
for sentence in sentences:
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
31 |
output = ""
|
32 |
for response in stream:
|
@@ -34,22 +34,13 @@ def generate_synthetic_data(sentences, generate_kwargs):
|
|
34 |
synthetic_data.append(output)
|
35 |
return synthetic_data
|
36 |
|
37 |
-
def generate(file,
|
38 |
# Extract text and split into sentences
|
39 |
text = extract_text_from_pdf(file)
|
40 |
sentences = text.split('.')
|
41 |
random.shuffle(sentences) # Shuffle sentences
|
42 |
|
43 |
-
|
44 |
-
temperature=temperature,
|
45 |
-
max_new_tokens=max_new_tokens,
|
46 |
-
top_p=top_p,
|
47 |
-
repetition_penalty=repetition_penalty,
|
48 |
-
do_sample=True,
|
49 |
-
seed=42,
|
50 |
-
)
|
51 |
-
|
52 |
-
synthetic_data = generate_synthetic_data(sentences, generate_kwargs)
|
53 |
|
54 |
# Convert synthetic data to CSV
|
55 |
df = pd.DataFrame(synthetic_data, columns=["Synthetic Data"])
|
@@ -57,19 +48,16 @@ def generate(file, system_prompt, temperature, max_new_tokens, top_p, repetition
|
|
57 |
df.to_csv(csv_buffer, index=False)
|
58 |
return gr.File(value=csv_buffer.getvalue(), file_name="synthetic_data.csv")
|
59 |
|
60 |
-
additional_inputs = [
|
61 |
-
gr.Slider(label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs"),
|
62 |
-
gr.Slider(label="Max new tokens", value=256, minimum=0, maximum=5120, step=64, interactive=True, info="The maximum numbers of new tokens"),
|
63 |
-
gr.Slider(label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens"),
|
64 |
-
gr.Slider(label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens"),
|
65 |
-
gr.File(label="Upload PDF File", file_count="single", file_types=[".pdf"]),
|
66 |
-
]
|
67 |
-
|
68 |
gr.Interface(
|
69 |
fn=generate,
|
70 |
-
inputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
outputs="file",
|
72 |
-
additional_inputs=additional_inputs,
|
73 |
title="Synthetic Data Generation",
|
74 |
description="This tool generates synthetic data from the sentences in your PDF.",
|
75 |
allow_flagging="never",
|
|
|
8 |
# Initialize the inference client with your chosen model
|
9 |
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
def extract_text_from_pdf(file):
|
12 |
pdf_reader = PyPDF2.PdfReader(file)
|
13 |
text = ""
|
|
|
15 |
text += pdf_reader.pages[page].extract_text()
|
16 |
return text
|
17 |
|
18 |
+
def generate_synthetic_data(sentences, temperature, max_new_tokens, top_p, repetition_penalty):
|
19 |
synthetic_data = []
|
20 |
for sentence in sentences:
|
21 |
+
generate_kwargs = {
|
22 |
+
"temperature": temperature,
|
23 |
+
"max_new_tokens": max_new_tokens,
|
24 |
+
"top_p": top_p,
|
25 |
+
"repetition_penalty": repetition_penalty,
|
26 |
+
"do_sample": True,
|
27 |
+
"seed": 42,
|
28 |
+
}
|
29 |
+
formatted_prompt = sentence # Using the sentence directly as the prompt
|
30 |
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
31 |
output = ""
|
32 |
for response in stream:
|
|
|
34 |
synthetic_data.append(output)
|
35 |
return synthetic_data
|
36 |
|
37 |
+
def generate(file, temperature, max_new_tokens, top_p, repetition_penalty):
|
38 |
# Extract text and split into sentences
|
39 |
text = extract_text_from_pdf(file)
|
40 |
sentences = text.split('.')
|
41 |
random.shuffle(sentences) # Shuffle sentences
|
42 |
|
43 |
+
synthetic_data = generate_synthetic_data(sentences, temperature, max_new_tokens, top_p, repetition_penalty)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
# Convert synthetic data to CSV
|
46 |
df = pd.DataFrame(synthetic_data, columns=["Synthetic Data"])
|
|
|
48 |
df.to_csv(csv_buffer, index=False)
|
49 |
return gr.File(value=csv_buffer.getvalue(), file_name="synthetic_data.csv")
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
gr.Interface(
|
52 |
fn=generate,
|
53 |
+
inputs=[
|
54 |
+
gr.File(label="Upload PDF File", file_count="single", file_types=[".pdf"]),
|
55 |
+
gr.Slider(label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs"),
|
56 |
+
gr.Slider(label="Max new tokens", value=256, minimum=0, maximum=5120, step=64, interactive=True, info="The maximum numbers of new tokens"),
|
57 |
+
gr.Slider(label="Top-p (nucleus sampling)", value=0.95, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens"),
|
58 |
+
gr.Slider(label="Repetition penalty", value=1.0, minimum=1.0, maximum=2.0, step=0.1, interactive=True, info="Penalize repeated tokens"),
|
59 |
+
],
|
60 |
outputs="file",
|
|
|
61 |
title="Synthetic Data Generation",
|
62 |
description="This tool generates synthetic data from the sentences in your PDF.",
|
63 |
allow_flagging="never",
|