raminass's picture
Upload 4 files
81d4aee
raw
history blame
5.92 kB
import subprocess
import sys
import re
import pandas as pd
try:
import eyecite
except ImportError:
subprocess.check_call([sys.executable, "-m", "pip", "install", 'eyecite'])
finally:
from eyecite import find, clean
# @title
def full_case(citation, text):
text = text.replace(citation.matched_text(), "")
if citation.metadata.year:
pattern = r'\([^)]*{}\)'.format(citation.metadata.year) # Matches any word that ends with "year"
text = re.sub(pattern, '', text)
if citation.metadata.pin_cite:
text = text.replace(citation.metadata.pin_cite, "")
if citation.metadata.parenthetical:
text = text.replace(f"({citation.metadata.parenthetical})", "")
if citation.metadata.plaintiff:
text = text.replace(f"{citation.metadata.plaintiff} v. {citation.metadata.defendant}", "")
publisher_date = " ".join(i for i in (citation.metadata.court, citation.metadata.year) if i)
if publisher_date:
text = text.replace(f"{publisher_date}", "")
if citation.metadata.extra:
text = text.replace(citation.metadata.extra, "")
return text
def supra_case(citation, text):
text = text.replace(citation.matched_text(), "")
if citation.metadata.pin_cite:
text = text.replace(citation.metadata.pin_cite, "")
if citation.metadata.parenthetical:
text = text.replace(f"({citation.metadata.parenthetical})", "")
if citation.metadata.antecedent_guess:
text = text.replace(citation.metadata.antecedent_guess, "")
return text
def short_case(citation, text):
text = text.replace(citation.matched_text(), "")
if citation.metadata.parenthetical:
text = text.replace(f"({citation.metadata.parenthetical})", "")
if citation.metadata.year:
pattern = r'\([^)]*{}\)'.format(citation.metadata.year)
if citation.metadata.antecedent_guess:
text = text.replace(citation.metadata.antecedent_guess, "")
return text
def id_case(citation, text):
text = text.replace(citation.matched_text(), "")
if citation.metadata.parenthetical:
text = text.replace(f"({citation.metadata.parenthetical})", "")
if citation.metadata.pin_cite:
text = text.replace(citation.metadata.pin_cite, "")
return text
def unknown_case(citation, text):
text = text.replace(citation.matched_text(), "")
if citation.metadata.parenthetical:
text = text.replace(f"({citation.metadata.parenthetical})", "")
return text
def full_law_case(citation, text):
text = text.replace(citation.matched_text(), "")
if citation.metadata.parenthetical:
text = text.replace(f"({citation.metadata.parenthetical})", "")
return text
def full_journal_case(citation, text):
text = text.replace(citation.matched_text(), "")
if citation.metadata.year:
pattern = r'\([^)]*{}\)'.format(citation.metadata.year) # Matches any word that ends with "year"
text = re.sub(pattern, '', text)
if citation.metadata.pin_cite:
text = text.replace(citation.metadata.pin_cite, "")
if citation.metadata.parenthetical:
text = text.replace(f"({citation.metadata.parenthetical})", "")
return text
def all_commas(text: str) -> str:
return re.sub(r"\,+", ",", text)
def all_dots(text: str) -> str:
return re.sub(r"\.+", ".", text)
functions_dict = {
'FullCaseCitation': full_case,
'SupraCitation': supra_case,
'ShortCaseCitation': short_case,
'IdCitation': id_case,
'UnknownCitation': unknown_case,
'FullLawCitation': full_law_case,
'FullJournalCitation': full_journal_case,
}
# @title
def remove_citations(input_text):
#clean text
plain_text = clean.clean_text(input_text, ['html', 'inline_whitespace', 'underscores'])
#remove citations
found_citations = find.get_citations(plain_text)
for citation in found_citations:
plain_text = functions_dict[citation.__class__.__name__](citation, plain_text)
#clean text
plain_text = clean.clean_text(plain_text, ['inline_whitespace', 'underscores','all_whitespace', all_commas, all_dots])
plain_text = clean.clean_text(plain_text, ['inline_whitespace','all_whitespace'])
pattern = r"\*?\d*\s*I+\n"
plain_text = re.sub(pattern, '', plain_text)
pattern = r"\s[,.]"
plain_text = re.sub(pattern, '', plain_text)
return plain_text
def split_text(text):
words = text.split()
chunks = []
for i in range(0, len(words), 420):
chunks.append(' '.join(words[i:i+430]))
return chunks
# @title
def chunk_text_to_paragraphs(text):
paragraphs = text.split("\n") # Split by empty line
# Remove leading and trailing whitespace from each paragraph
paragraphs = [p.strip() for p in paragraphs]
return paragraphs
# @title
def split_data(data, id2label, label2id):
data_dict = {'author_name': [],
'label': [],
'category': [],
'case_name': [],
'url': [],
'text': []}
opinions_split = pd.DataFrame(data_dict)
opinions_split['label'] = opinions_split['label'].astype(int)
for index, row in data.iterrows():
# chunks = chunk_text_to_paragraphs(row['text'])
chunks = split_text(row['clean_text'])
for chunk in chunks:
if len(chunk)<1000:
continue
tmp = pd.DataFrame({'author_name': row['author_name'],'label': [label2id[row['author_name']]],
'category': row['category'],'case_name': row['case_name'],
'url': [row['absolute_url']], 'text': [chunk]})
opinions_split = pd.concat([opinions_split, tmp])
return opinions_split
def chunk_data(data):
data_dict = {'text': []}
opinions_split = pd.DataFrame(data_dict)
chunks = split_text(data)
for chunk in chunks:
if len(chunk)<1000:
continue
tmp = pd.DataFrame({'label': [200],'text': [chunk]})
opinions_split = pd.concat([opinions_split, tmp])
return opinions_split