Spaces:
Paused
Paused
import os | |
import re | |
import torch | |
from threading import Thread | |
from typing import Iterator | |
from mongoengine import connect, Document, StringField, SequenceField | |
import gradio as gr | |
import spaces | |
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextIteratorStreamer | |
from peft import PeftModel | |
# Constants | |
MAX_MAX_NEW_TOKENS = 2048 | |
DEFAULT_MAX_NEW_TOKENS = 930 | |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
LICENSE = """ | |
--- | |
As a derivative work of [Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) by Meta, | |
this demo is governed by the original [license](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat/blob/main/LICENSE.txt) and [acceptable use policy](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat/blob/main/USE_POLICY.md). | |
""" | |
if not torch.cuda.is_available(): | |
DESCRIPTION += "\n<p>Running on CPU ๐ฅถ This demo does not work on CPU.</p>" | |
if torch.cuda.is_available(): | |
modelA_id = "meta-llama/Llama-2-7b-chat-hf" | |
bnb_config = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_use_double_quant=False, | |
bnb_4bit_quant_type="nf4", | |
bnb_4bit_compute_dtype=torch.bfloat16 | |
) | |
base_model = AutoModelForCausalLM.from_pretrained(modelA_id, device_map="auto", quantization_config=bnb_config) | |
modelA = PeftModel.from_pretrained(base_model, "ranamhamoud/storytell") | |
tokenizerA = AutoTokenizer.from_pretrained(modelA_id) | |
tokenizerA.pad_token = tokenizerA.eos_token | |
modelB_id = "meta-llama/Llama-2-7b-chat-hf" | |
modelB = AutoModelForCausalLM.from_pretrained(modelB_id, torch_dtype=torch.float16, device_map="auto") | |
tokenizerB = AutoTokenizer.from_pretrained(modelB_id) | |
tokenizerB.use_default_system_prompt = False | |
def make_prompt(entry): | |
return f"### Human: Don't repeat the assesments, limit to 500 words {entry} ### Assistant:" | |
def generate( | |
model: str, | |
message: str, | |
chat_history: list[tuple[str, str]], | |
system_prompt: str, | |
max_new_tokens: int = 1024, | |
temperature: float = 0.6, | |
top_p: float = 0.9, | |
top_k: int = 50, | |
repetition_penalty: float = 1.2, | |
) -> Iterator[str]: | |
if model == "A": | |
model = modelA | |
tokenizer = tokenizerA | |
enc = tokenizer(make_prompt(message), return_tensors="pt", padding=True, truncation=True) | |
input_ids = enc.input_ids.to(model.device) | |
else: | |
model = modelB | |
tokenizer = tokenizerB | |
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt") | |
conversation = [] | |
if system_prompt: | |
conversation.append({"role": "system", "content": system_prompt}) | |
for user, assistant in chat_history: | |
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) | |
conversation.append({"role": "user", "content": message}) | |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") | |
input_ids = input_ids.to(model.device) | |
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
{"input_ids": input_ids}, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
top_p=top_p, | |
top_k=top_k, | |
temperature=temperature, | |
num_beams=1, | |
repetition_penalty=repetition_penalty, | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
outputs = [] | |
for text in streamer: | |
outputs.append(text) | |
yield "".join(outputs) | |
# Gradio Interface Setup | |
chat_interface = gr.ChatInterface( | |
fn=generate, | |
additional_inputs=[gr.Dropdown("Model", ["A", "B"],label="Animal", info="Will add more animals later!")], | |
fill_height=True, | |
stop_btn=None, | |
examples=[ | |
["Can you explain briefly to me what is the Python programming language?"], | |
["Could you please provide an explanation about the concept of recursion?"], | |
["Could you explain what a URL is?"] | |
], | |
theme='shivi/calm_seafoam' | |
) | |
# Gradio Web Interface | |
with gr.Blocks(theme='shivi/calm_seafoam',fill_height=True) as demo: | |
# gr.Markdown(DESCRIPTION) | |
chat_interface.render() | |
gr.Markdown(LICENSE) | |
# Main Execution | |
if __name__ == "__main__": | |
demo.queue(max_size=20) | |
demo.launch(share=True) | |