File size: 12,743 Bytes
e5d992d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
058b956
 
 
e5d992d
058b956
e5d992d
058b956
e5d992d
 
 
 
 
 
 
 
25d74ba
7f17662
 
 
 
 
 
 
e5d992d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
058b956
e5d992d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
117e9a7
e5d992d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
from llama_index.indices.managed.vectara import VectaraIndex
from dotenv import load_dotenv
import os
from docx import Document
from llama_index.llms.together import TogetherLLM
from llama_index.core.llms import ChatMessage, MessageRole
from Bio import Entrez 
import ssl
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import streamlit as st
from googleapiclient.discovery import build
from typing import List, Optional

load_dotenv()

os.environ["VECTARA_INDEX_API_KEY"] = os.getenv("VECTARA_INDEX_API_KEY", "zwt_Vo9cpGzm6QVtABcdnzVq6QXLdGIP4YAcvcyEAA")
os.environ["VECTARA_QUERY_API_KEY"] = os.getenv("VECTARA_QUERY_API_KEY", "zqt_Vo9cpBoyEjUQdcTVo2W5hmMKPueBUroBLoGwNQ")
os.environ["VECTARA_API_KEY"] = os.getenv("VECTARA_API_KEY", "zut_Vo9cpHni2hWF_DPJAXmRFKkWzRTWbi-8JwnSxA")
os.environ["VECTARA_CORPUS_ID"] = os.getenv("VECTARA_CORPUS_ID", "2")
os.environ["VECTARA_CUSTOMER_ID"] = os.getenv("VECTARA_CUSTOMER_ID", "1452235940")
os.environ["TOGETHER_API"] = os.getenv("TOGETHER_API", "7e6c200b7b36924bc1b4a5973859a20d2efa7180e9b5c977301173a6c099136b")
os.environ["GOOGLE_SEARCH_API_KEY"] = os.getenv("GOOGLE_SEARCH_API_KEY", "AIzaSyALmmMjvmrmHGtjjuPLEMy6Bp2qgMQJ3Ck")

# Initialize the Vectara index
index = VectaraIndex()

endpoint = 'https://api.together.xyz/inference'

# Load the hallucination evaluation model
model_name = "vectara/hallucination_evaluation_model"
model = AutoModelForSequenceClassification.from_pretrained(model_name, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")

def vectara_hallucination_evaluation_model(text):
    inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
    outputs = model(**inputs)
    hallucination_probability = outputs.logits[0][0].item()  
    return hallucination_probability

def search_pubmed(query: str) -> Optional[List[str]]:
    """
    Searches PubMed for a given query and returns a list of formatted results 
    (or None if no results are found).
    """
    Entrez.email = "[email protected]"  

    try:
        ssl._create_default_https_context = ssl._create_unverified_context

        handle = Entrez.esearch(db="pubmed", term=query, retmax=3)
        record = Entrez.read(handle)
        id_list = record["IdList"]

        if not id_list:
            return None

        handle = Entrez.efetch(db="pubmed", id=id_list, retmode="xml")
        articles = Entrez.read(handle)

        results = []
        for article in articles['PubmedArticle']:
            try:
                medline_citation = article['MedlineCitation']
                article_data = medline_citation['Article']
                title = article_data['ArticleTitle']
                abstract = article_data.get('Abstract', {}).get('AbstractText', [""])[0]

                result = f"**Title:** {title}\n**Abstract:** {abstract}\n"
                result += f"**Link:** https://pubmed.ncbi.nlm.gov/{medline_citation['PMID']}\n\n"
                results.append(result)
            except KeyError as e:
                print(f"Error parsing article: {article}, Error: {e}")

        return results

    except Exception as e:
        print(f"Error accessing PubMed: {e}")
        return None

def chat_with_pubmed(article_text, article_link):
    """
    Engages in a chat-like interaction with a PubMed article using TogetherLLM.
    """
    try:
        llm = TogetherLLM(model="QWEN/QWEN1.5-14B-CHAT", api_key=os.environ['TOGETHER_API'])
        messages = [
            ChatMessage(role=MessageRole.SYSTEM, content="You are a helpful AI assistant summarizing and answering questions about the following medical research article: " + article_link),
            ChatMessage(role=MessageRole.USER, content=article_text)
        ]
        response = llm.chat(messages)
        return str(response) if response else "I'm sorry, I couldn't generate a summary for this article."
    except Exception as e:
        print(f"Error in chat_with_pubmed: {e}")
        return "An error occurred while generating a summary."

def search_web(query: str, num_results: int = 3) -> Optional[List[str]]:
    """
    Searches the web using the Google Search API and returns a list of formatted results
    (or None if no results are found).
    """
    try:
        service = build("customsearch", "v1", developerKey=os.environ["GOOGLE_SEARCH_API_KEY"])

        # Execute the search request
        res = service.cse().list(q=query, cx="6128965e5bcae442b", num=num_results).execute()

        if "items" not in res:
            return None

        results = []
        for item in res["items"]:
            title = item["title"]
            link = item["link"]
            snippet = item["snippet"]
            result = f"**Title:** {title}\n**Link:** {link}\n**Snippet:** {snippet}\n\n"
            results.append(result)

        return results

    except Exception as e:
        print(f"Error performing web search: {e}")
        return None

def NEXUS_chatbot(user_input, chat_history=None):
    """
    Processes user input, interacts with various resources, and generates a response. 
    Handles potential errors, maintains chat history, and evaluates hallucination risk.
    """

    if chat_history is None:
        chat_history = []

    response_parts = []  # Collect responses from different sources

    try:
        # Vectara Search
        try:
            query_str = user_input
            response = index.as_query_engine().query(query_str)
            response_parts.append(f"**NEXUS Vectara Knowledge Base Response:**\n{response.response}")
        except Exception as e:
            print(f"Error in Vectara search: {e}")
            response_parts.append("Vectara knowledge base is currently unavailable.")

        # PubMed Search and Chat
        pubmed_results = search_pubmed(user_input)
        if pubmed_results:
            response_parts.append("**PubMed Articles (Chat & Summarize):**")
            for article_text in pubmed_results:
                title, abstract, link = article_text.split("\n")[:3]
                chat_summary = chat_with_pubmed(abstract, link)
                response_parts.append(f"{title}\n{chat_summary}\n{link}\n")
        else:
            response_parts.append("No relevant PubMed articles found.")

        # Web Search
        web_results = search_web(user_input)
        if web_results:
            response_parts.append("**Web Search Results:**")
            response_parts.extend(web_results)
        else:
            response_parts.append("No relevant web search results found.")

        # Combine response parts into a single string
        response_text = "\n\n".join(response_parts)

        # Hallucination Evaluation
        def vectara_hallucination_evaluation_model(text):
            inputs = tokenizer(text, return_tensors="pt")
            outputs = model(**inputs)
            hallucination_probability = outputs.logits[0][0].item()  
            return hallucination_probability

        hallucination_score = vectara_hallucination_evaluation_model(response_text)
        HIGH_HALLUCINATION_THRESHOLD = 0.9
        if hallucination_score > HIGH_HALLUCINATION_THRESHOLD:
            response_text = "I'm still under development and learning. I cannot confidently answer this question yet."

    except Exception as e:
        print(f"Error in chatbot: {e}")
        response_text = "An error occurred. Please try again later."

    chat_history.append((user_input, response_text))
    return response_text, chat_history

def show_info_popup():
    with st.expander("How to use NEXUS"):
        st.write("""
        **NEXUS is an AI-powered chatbot designed to assist with medical information.**
        **Capabilities:**
        *   **Answers general medical questions:** NEXUS utilizes a curated medical knowledge base to provide answers to a wide range of health-related inquiries.
        *   **Summarizes relevant research articles from PubMed:** The chatbot can retrieve and summarize research articles from the PubMed database, making complex scientific information more accessible.
        *   **Provides insights from a curated medical knowledge base:** Beyond simple answers, NEXUS offers additional insights and context from its knowledge base to enhance understanding. 
        *   **Perform safe web searches related to your query:** The chatbot can perform web searches using the Google Search API, ensuring the safety and relevance of the results.
        **Limitations:**
        *   **Not a substitute for professional medical advice:** NEXUS is not intended to replace professional medical diagnosis and treatment. Always consult a qualified healthcare provider for personalized medical advice.
        *   **General knowledge and educational purposes:** The information provided by NEXUS is for general knowledge and educational purposes only and may not be exhaustive or specific to individual situations.
        *   **Under development:** NEXUS is still under development and may occasionally provide inaccurate or incomplete information. It's important to critically evaluate responses and cross-reference with reliable sources.
        *   **Hallucination potential:** While NEXUS employs a hallucination evaluation model to minimize the risk of generating fabricated information, there remains a possibility of encountering inaccurate responses, especially for complex or niche queries.
        **How to use:**
        1.  **Type your medical question in the text box.**
        2.  **NEXUS will provide a comprehensive response combining information from various sources.** This may include insights from its knowledge base, summaries of relevant research articles, and safe web search results.
        3.  **You can continue the conversation by asking follow-up questions or providing additional context.** This helps NEXUS refine its search and offer more tailored information.
        4.  **in case the NEXUS doesn't show the output please check your internet connection or rerun the same command**
        5.  **user can either chat with the documents or with generate resposne from vectara + pubmed + web search**
        5.  **chat with document feature is still under development so it would be better to avoid using it for now**
        """)

# Initialize session state
if 'chat_history' not in st.session_state:
    st.session_state.chat_history = []

# Define function to display chat history with highlighted user input and chatbot response
def display_chat_history():
    for user_msg, bot_msg in st.session_state.chat_history:
        st.info(f"**You:** {user_msg}")
        st.success(f"**NEXUS:** {bot_msg}")

# Define function to clear chat history
def clear_chat():
    st.session_state.chat_history = []

def main():
    # Streamlit Page Configuration
    st.set_page_config(page_title="NEXUS Chatbot", layout="wide")

    # Custom Styles
    st.markdown(
        """
        <style>
        .css-18e3th9 {
            padding-top: 2rem;
            padding-right: 1rem;
            padding-bottom: 2rem;
            padding-left: 1rem;
        }
        .stButton>button {
            background-color: #4CAF50;
            color: white;
        }
        body {
            background-color: #F0FDF4;
            color: #333333;
        }
        .stMarkdown h1, .stMarkdown h2, .stMarkdown h3, .stMarkdown h4, .stMarkdown h5, .stMarkdown h6 {
            color: #388E3C;
        }
        </style>
        """,
        unsafe_allow_html=True,
    )

    # Title and Introduction
    st.title("NEXUS Chatbot")
    st.write("Ask your medical questions and get reliable information!")

    # Example Questions (Sidebar)
    example_questions = [
        "What are the symptoms of COVID-19?",
        "How can I manage my diabetes?",
        "What are the potential side effects of ibuprofen?",
        "What lifestyle changes can help prevent heart disease?"
    ]
    st.sidebar.header("Example Questions")
    for question in example_questions:
        st.sidebar.write(question)

    # Output Container
    output_container = st.container()

    # User Input and Chat History
    input_container = st.container()
    with input_container:
        user_input = st.text_input("You: ", key="input_placeholder", placeholder="Type your medical question here...")
        new_chat_button = st.button("Start New Chat")
        if new_chat_button:
            st.session_state.chat_history = []  # Clear chat history

    if user_input:
        response, st.session_state.chat_history = NEXUS_chatbot(user_input, st.session_state.chat_history)
        with output_container:
            display_chat_history()

    # Information Popup
    show_info_popup()

if __name__ == "__main__":
    main()