NEXUS / nexus.py
ranavikas's picture
Update nexus.py (#3)
7f17662 verified
raw
history blame
12.7 kB
from llama_index.indices.managed.vectara import VectaraIndex
from dotenv import load_dotenv
import os
from docx import Document
from llama_index.llms.together import TogetherLLM
from llama_index.core.llms import ChatMessage, MessageRole
from Bio import Entrez
import ssl
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import streamlit as st
from googleapiclient.discovery import build
from typing import List, Optional
load_dotenv()
os.environ["VECTARA_INDEX_API_KEY"] = os.getenv("VECTARA_INDEX_API_KEY", "zwt_Vo9cpGzm6QVtABcdnzVq6QXLdGIP4YAcvcyEAA")
os.environ["VECTARA_QUERY_API_KEY"] = os.getenv("VECTARA_QUERY_API_KEY", "zqt_Vo9cpBoyEjUQdcTVo2W5hmMKPueBUroBLoGwNQ")
os.environ["VECTARA_API_KEY"] = os.getenv("VECTARA_API_KEY", "zut_Vo9cpHni2hWF_DPJAXmRFKkWzRTWbi-8JwnSxA")
os.environ["VECTARA_CORPUS_ID"] = os.getenv("VECTARA_CORPUS_ID", "2")
os.environ["VECTARA_CUSTOMER_ID"] = os.getenv("VECTARA_CUSTOMER_ID", "1452235940")
os.environ["TOGETHER_API"] = os.getenv("TOGETHER_API", "7e6c200b7b36924bc1b4a5973859a20d2efa7180e9b5c977301173a6c099136b")
os.environ["GOOGLE_SEARCH_API_KEY"] = os.getenv("GOOGLE_SEARCH_API_KEY", "AIzaSyALmmMjvmrmHGtjjuPLEMy6Bp2qgMQJ3Ck")
# Initialize the Vectara index
index = VectaraIndex()
endpoint = 'https://api.together.xyz/inference'
# Load the hallucination evaluation model
model_name = "vectara/hallucination_evaluation_model"
model = AutoModelForSequenceClassification.from_pretrained(model_name, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
def vectara_hallucination_evaluation_model(text):
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
outputs = model(**inputs)
hallucination_probability = outputs.logits[0][0].item()
return hallucination_probability
def search_pubmed(query: str) -> Optional[List[str]]:
"""
Searches PubMed for a given query and returns a list of formatted results
(or None if no results are found).
"""
Entrez.email = "[email protected]"
try:
ssl._create_default_https_context = ssl._create_unverified_context
handle = Entrez.esearch(db="pubmed", term=query, retmax=3)
record = Entrez.read(handle)
id_list = record["IdList"]
if not id_list:
return None
handle = Entrez.efetch(db="pubmed", id=id_list, retmode="xml")
articles = Entrez.read(handle)
results = []
for article in articles['PubmedArticle']:
try:
medline_citation = article['MedlineCitation']
article_data = medline_citation['Article']
title = article_data['ArticleTitle']
abstract = article_data.get('Abstract', {}).get('AbstractText', [""])[0]
result = f"**Title:** {title}\n**Abstract:** {abstract}\n"
result += f"**Link:** https://pubmed.ncbi.nlm.gov/{medline_citation['PMID']}\n\n"
results.append(result)
except KeyError as e:
print(f"Error parsing article: {article}, Error: {e}")
return results
except Exception as e:
print(f"Error accessing PubMed: {e}")
return None
def chat_with_pubmed(article_text, article_link):
"""
Engages in a chat-like interaction with a PubMed article using TogetherLLM.
"""
try:
llm = TogetherLLM(model="QWEN/QWEN1.5-14B-CHAT", api_key=os.environ['TOGETHER_API'])
messages = [
ChatMessage(role=MessageRole.SYSTEM, content="You are a helpful AI assistant summarizing and answering questions about the following medical research article: " + article_link),
ChatMessage(role=MessageRole.USER, content=article_text)
]
response = llm.chat(messages)
return str(response) if response else "I'm sorry, I couldn't generate a summary for this article."
except Exception as e:
print(f"Error in chat_with_pubmed: {e}")
return "An error occurred while generating a summary."
def search_web(query: str, num_results: int = 3) -> Optional[List[str]]:
"""
Searches the web using the Google Search API and returns a list of formatted results
(or None if no results are found).
"""
try:
service = build("customsearch", "v1", developerKey=os.environ["GOOGLE_SEARCH_API_KEY"])
# Execute the search request
res = service.cse().list(q=query, cx="6128965e5bcae442b", num=num_results).execute()
if "items" not in res:
return None
results = []
for item in res["items"]:
title = item["title"]
link = item["link"]
snippet = item["snippet"]
result = f"**Title:** {title}\n**Link:** {link}\n**Snippet:** {snippet}\n\n"
results.append(result)
return results
except Exception as e:
print(f"Error performing web search: {e}")
return None
def NEXUS_chatbot(user_input, chat_history=None):
"""
Processes user input, interacts with various resources, and generates a response.
Handles potential errors, maintains chat history, and evaluates hallucination risk.
"""
if chat_history is None:
chat_history = []
response_parts = [] # Collect responses from different sources
try:
# Vectara Search
try:
query_str = user_input
response = index.as_query_engine().query(query_str)
response_parts.append(f"**NEXUS Vectara Knowledge Base Response:**\n{response.response}")
except Exception as e:
print(f"Error in Vectara search: {e}")
response_parts.append("Vectara knowledge base is currently unavailable.")
# PubMed Search and Chat
pubmed_results = search_pubmed(user_input)
if pubmed_results:
response_parts.append("**PubMed Articles (Chat & Summarize):**")
for article_text in pubmed_results:
title, abstract, link = article_text.split("\n")[:3]
chat_summary = chat_with_pubmed(abstract, link)
response_parts.append(f"{title}\n{chat_summary}\n{link}\n")
else:
response_parts.append("No relevant PubMed articles found.")
# Web Search
web_results = search_web(user_input)
if web_results:
response_parts.append("**Web Search Results:**")
response_parts.extend(web_results)
else:
response_parts.append("No relevant web search results found.")
# Combine response parts into a single string
response_text = "\n\n".join(response_parts)
# Hallucination Evaluation
def vectara_hallucination_evaluation_model(text):
inputs = tokenizer(text, return_tensors="pt")
outputs = model(**inputs)
hallucination_probability = outputs.logits[0][0].item()
return hallucination_probability
hallucination_score = vectara_hallucination_evaluation_model(response_text)
HIGH_HALLUCINATION_THRESHOLD = 0.9
if hallucination_score > HIGH_HALLUCINATION_THRESHOLD:
response_text = "I'm still under development and learning. I cannot confidently answer this question yet."
except Exception as e:
print(f"Error in chatbot: {e}")
response_text = "An error occurred. Please try again later."
chat_history.append((user_input, response_text))
return response_text, chat_history
def show_info_popup():
with st.expander("How to use NEXUS"):
st.write("""
**NEXUS is an AI-powered chatbot designed to assist with medical information.**
**Capabilities:**
* **Answers general medical questions:** NEXUS utilizes a curated medical knowledge base to provide answers to a wide range of health-related inquiries.
* **Summarizes relevant research articles from PubMed:** The chatbot can retrieve and summarize research articles from the PubMed database, making complex scientific information more accessible.
* **Provides insights from a curated medical knowledge base:** Beyond simple answers, NEXUS offers additional insights and context from its knowledge base to enhance understanding.
* **Perform safe web searches related to your query:** The chatbot can perform web searches using the Google Search API, ensuring the safety and relevance of the results.
**Limitations:**
* **Not a substitute for professional medical advice:** NEXUS is not intended to replace professional medical diagnosis and treatment. Always consult a qualified healthcare provider for personalized medical advice.
* **General knowledge and educational purposes:** The information provided by NEXUS is for general knowledge and educational purposes only and may not be exhaustive or specific to individual situations.
* **Under development:** NEXUS is still under development and may occasionally provide inaccurate or incomplete information. It's important to critically evaluate responses and cross-reference with reliable sources.
* **Hallucination potential:** While NEXUS employs a hallucination evaluation model to minimize the risk of generating fabricated information, there remains a possibility of encountering inaccurate responses, especially for complex or niche queries.
**How to use:**
1. **Type your medical question in the text box.**
2. **NEXUS will provide a comprehensive response combining information from various sources.** This may include insights from its knowledge base, summaries of relevant research articles, and safe web search results.
3. **You can continue the conversation by asking follow-up questions or providing additional context.** This helps NEXUS refine its search and offer more tailored information.
4. **in case the NEXUS doesn't show the output please check your internet connection or rerun the same command**
5. **user can either chat with the documents or with generate resposne from vectara + pubmed + web search**
5. **chat with document feature is still under development so it would be better to avoid using it for now**
""")
# Initialize session state
if 'chat_history' not in st.session_state:
st.session_state.chat_history = []
# Define function to display chat history with highlighted user input and chatbot response
def display_chat_history():
for user_msg, bot_msg in st.session_state.chat_history:
st.info(f"**You:** {user_msg}")
st.success(f"**NEXUS:** {bot_msg}")
# Define function to clear chat history
def clear_chat():
st.session_state.chat_history = []
def main():
# Streamlit Page Configuration
st.set_page_config(page_title="NEXUS Chatbot", layout="wide")
# Custom Styles
st.markdown(
"""
<style>
.css-18e3th9 {
padding-top: 2rem;
padding-right: 1rem;
padding-bottom: 2rem;
padding-left: 1rem;
}
.stButton>button {
background-color: #4CAF50;
color: white;
}
body {
background-color: #F0FDF4;
color: #333333;
}
.stMarkdown h1, .stMarkdown h2, .stMarkdown h3, .stMarkdown h4, .stMarkdown h5, .stMarkdown h6 {
color: #388E3C;
}
</style>
""",
unsafe_allow_html=True,
)
# Title and Introduction
st.title("NEXUS Chatbot")
st.write("Ask your medical questions and get reliable information!")
# Example Questions (Sidebar)
example_questions = [
"What are the symptoms of COVID-19?",
"How can I manage my diabetes?",
"What are the potential side effects of ibuprofen?",
"What lifestyle changes can help prevent heart disease?"
]
st.sidebar.header("Example Questions")
for question in example_questions:
st.sidebar.write(question)
# Output Container
output_container = st.container()
# User Input and Chat History
input_container = st.container()
with input_container:
user_input = st.text_input("You: ", key="input_placeholder", placeholder="Type your medical question here...")
new_chat_button = st.button("Start New Chat")
if new_chat_button:
st.session_state.chat_history = [] # Clear chat history
if user_input:
response, st.session_state.chat_history = NEXUS_chatbot(user_input, st.session_state.chat_history)
with output_container:
display_chat_history()
# Information Popup
show_info_popup()
if __name__ == "__main__":
main()