yogsss / app.py
randomshit11's picture
Update app.py
cc451a5 verified
import os
import streamlit as st
import cv2
import mediapipe as mp
import numpy as np
import math
from tensorflow.keras.models import Model
from tensorflow.keras.layers import (LSTM, Dense, Dropout, Input, Flatten,
Bidirectional, Permute, multiply)
# Load the pose estimation model from Mediapipe
mp_pose = mp.solutions.pose
mp_drawing = mp.solutions.drawing_utils
pose = mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5)
# Define the attention block for the LSTM model
def attention_block(inputs, time_steps):
a = Permute((2, 1))(inputs)
a = Dense(time_steps, activation='softmax')(a)
a_probs = Permute((2, 1), name='attention_vec')(a)
output_attention_mul = multiply([inputs, a_probs], name='attention_mul')
return output_attention_mul
# Build and load the LSTM model
@st.cache(allow_output_mutation=True)
def build_model(HIDDEN_UNITS=256, sequence_length=30, num_input_values=33*4, num_classes=3):
inputs = Input(shape=(sequence_length, num_input_values))
lstm_out = Bidirectional(LSTM(HIDDEN_UNITS, return_sequences=True))(inputs)
attention_mul = attention_block(lstm_out, sequence_length)
attention_mul = Flatten()(attention_mul)
x = Dense(2*HIDDEN_UNITS, activation='relu')(attention_mul)
x = Dropout(0.5)(x)
x = Dense(num_classes, activation='softmax')(x)
model = Model(inputs=[inputs], outputs=x)
load_dir = "./models/LSTM_Attention.h5"
model.load_weights(load_dir)
return model
# Define the VideoProcessor class for real-time video processing
class VideoProcessor:
def __init__(self):
# Parameters
self.actions = np.array(['curl', 'press', 'squat'])
self.sequence_length = 30
self.colors = [(245,117,16), (117,245,16), (16,117,245)]
self.threshold = 0.5
self.model = build_model(256)
# Detection variables
self.sequence = []
self.current_action = ''
# Rep counter logic variables
self.curl_counter = 0
self.press_counter = 0
self.squat_counter = 0
self.curl_stage = None
self.press_stage = None
self.squat_stage = None
self.pose = mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5)
def process_video(self, video_file):
# Get the filename from the file object
filename = "temp_video.mp4"
# Create a temporary file to write the contents of the uploaded video file
with open(filename, 'wb') as temp_file:
temp_file.write(video_file.read())
# Process the video and save the processed video to a new file
output_filename = "processed_video.mp4"
cap = cv2.VideoCapture(filename)
frame_width = int(cap.get(3))
frame_height = int(cap.get(4))
out = cv2.VideoWriter(output_filename, cv2.VideoWriter_fourcc(*'h264'), 30, (frame_width, frame_height))
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
results = self.pose.process(frame_rgb)
processed_frame = self.process_frame(frame, results)
out.write(processed_frame)
cap.release()
out.release()
# Remove the temporary file
os.remove(filename)
# Return the path to the processed video file
return output_filename
def process_frame(self, frame, results):
# Process the frame using the `process` function
processed_frame = self.process(frame)
return processed_frame
def process(self, image):
# Pose detection model
image.flags.writeable = False
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
results = pose.process(image)
# Draw the hand annotations on the image.
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
self.draw_landmarks(image, results)
# Prediction logic
keypoints = self.extract_keypoints(results)
self.sequence.append(keypoints.astype('float32',casting='same_kind'))
self.sequence = self.sequence[-self.sequence_length:]
if len(self.sequence) == self.sequence_length:
res = self.model.predict(np.expand_dims(self.sequence, axis=0), verbose=0)[0]
self.current_action = self.actions[np.argmax(res)]
confidence = np.max(res)
print("confidence", confidence) # Debug print statement
print("current action" , self.current_action)
# Erase current action variable if no probability is above threshold
if confidence < self.threshold:
self.current_action = ''
print("current action" , self.current_action)
# Viz probabilities
image = self.prob_viz(res, image)
# Count reps
landmarks = results.pose_landmarks.landmark
self.count_reps(image, landmarks, mp_pose)
# Display graphical information
cv2.rectangle(image, (0,0), (640, 40), self.colors[np.argmax(res)], -1)
cv2.putText(image, 'curl ' + str(self.curl_counter), (3,30),
cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2, cv2.LINE_AA)
cv2.putText(image, 'press ' + str(self.press_counter), (240,30),
cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2, cv2.LINE_AA)
cv2.putText(image, 'squat ' + str(self.squat_counter), (490,30),
cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2, cv2.LINE_AA)
return image
def draw_landmarks(self, image, results):
mp_drawing.draw_landmarks(image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS,
mp_drawing.DrawingSpec(color=(245,117,66), thickness=2, circle_radius=2),
mp_drawing.DrawingSpec(color=(245,66,230), thickness=2, circle_radius=2))
return image
def extract_keypoints(self, results):
pose = np.array([[res.x, res.y, res.z, res.visibility] for res in results.pose_landmarks.landmark]).flatten() if results.pose_landmarks else np.zeros(33*4)
return pose
def count_reps(self, image, landmarks, mp_pose):
"""
Counts repetitions of each exercise. Global count and stage (i.e., state) variables are updated within this function.
"""
if self.current_action == 'curl':
# Get coords
shoulder = self.get_coordinates(landmarks, mp_pose, 'LEFT', 'SHOULDER')
elbow = self.get_coordinates(landmarks, mp_pose, 'LEFT', 'ELBOW')
wrist = self.get_coordinates(landmarks, mp_pose, 'LEFT', 'WRIST')
# calculate elbow angle
angle = self.calculate_angle(shoulder, elbow, wrist)
# curl counter logic
print("Curl Angle:", angle) # Debug print statement
if angle < 30:
self.curl_stage = "up"
if angle > 140 and self.curl_stage == 'up':
self.curl_stage = "down"
self.curl_counter += 1
print("count:",self.curl_counter)
self.press_stage = None
self.squat_stage = None
# Viz joint angle
self.viz_joint_angle(image, angle, elbow)
elif self.current_action == 'press':
# Get coords
shoulder = self.get_coordinates(landmarks, mp_pose, 'LEFT', 'SHOULDER')
elbow = self.get_coordinates(landmarks, mp_pose, 'LEFT', 'ELBOW')
wrist = self.get_coordinates(landmarks, mp_pose, 'LEFT', 'WRIST')
# Calculate elbow angle
elbow_angle = self.calculate_angle(shoulder, elbow, wrist)
print(shoulder, elbow, wrist)
# Compute distances between joints
shoulder2elbow_dist = abs(math.dist(shoulder, elbow))
shoulder2wrist_dist = abs(math.dist(shoulder, wrist))
# Press counter logic
print("Press Angle:", elbow_angle) # Debug print statement
print("Shoulder to Elbow Distance:", shoulder2elbow_dist) # Debug print statement
print("Shoulder to Wrist Distance:", shoulder2wrist_dist) # Debug print statement
if (elbow_angle > 130) and (shoulder2elbow_dist < shoulder2wrist_dist):
self.press_stage = "up"
if (elbow_angle < 50) and (shoulder2elbow_dist > shoulder2wrist_dist) and (self.press_stage == 'up'):
self.press_stage = 'down'
self.press_counter += 1
print("count:",self.press_counter)
self.curl_stage = None
self.squat_stage = None
# Viz joint angle
self.viz_joint_angle(image, elbow_angle, elbow)
elif self.current_action == 'squat':
# Get coords
# left side
left_shoulder = self.get_coordinates(landmarks, mp_pose, 'LEFT', 'SHOULDER')
left_hip = self.get_coordinates(landmarks, mp_pose, 'LEFT', 'HIP')
left_knee = self.get_coordinates(landmarks, mp_pose, 'LEFT', 'KNEE')
left_ankle = self.get_coordinates(landmarks, mp_pose, 'LEFT', 'ANKLE')
# right side
right_shoulder = self.get_coordinates(landmarks, mp_pose, 'RIGHT', 'SHOULDER')
right_hip = self.get_coordinates(landmarks, mp_pose, 'RIGHT', 'HIP')
right_knee = self.get_coordinates(landmarks, mp_pose, 'RIGHT', 'KNEE')
right_ankle = self.get_coordinates(landmarks, mp_pose, 'RIGHT', 'ANKLE')
# Calculate knee angles
left_knee_angle = self.calculate_angle(left_hip, left_knee, left_ankle)
right_knee_angle = self.calculate_angle(right_hip, right_knee, right_ankle)
# Calculate hip angles
left_hip_angle = self.calculate_angle(left_shoulder, left_hip, left_knee)
right_hip_angle = self.calculate_angle(right_shoulder, right_hip, right_knee)
# Squat counter logic
thr = 165
print("Left Knee Angle:", left_knee_angle) # Debug print statement
print("Right Knee Angle:", right_knee_angle) # Debug print statement
print("Left Hip Angle:", left_hip_angle) # Debug print statement
print("Right Hip Angle:", right_hip_angle) # Debug print statement
if (left_knee_angle < thr) and (right_knee_angle < thr) and (left_hip_angle < thr) and (
right_hip_angle < thr):
self.squat_stage = "down"
if (left_knee_angle > thr) and (right_knee_angle > thr) and (left_hip_angle > thr) and (
right_hip_angle > thr) and (self.squat_stage == 'down'):
self.squat_stage = 'up'
self.squat_counter += 1
print("count:",self.squat_counter)
self.curl_stage = None
self.press_stage = None
# Viz joint angles
self.viz_joint_angle(image, left_knee_angle, left_knee)
self.viz_joint_angle(image, left_hip_angle, left_hip)
else:
pass
return
def prob_viz(self, res, input_frame):
"""
This function displays the model prediction probability distribution over the set of exercise classes
as a horizontal bar graph
"""
output_frame = input_frame.copy()
for num, prob in enumerate(res):
cv2.rectangle(output_frame, (0,60+num*40), (int(prob*100), 90+num*40), self.colors[num], -1)
cv2.putText(output_frame, self.actions[num], (0, 85+num*40), cv2.FONT_HERSHEY_SIMPLEX, 1, (255,255,255), 2, cv2.LINE_AA)
return output_frame
def get_coordinates(self, landmarks, mp_pose, side, part):
coord = getattr(mp_pose.PoseLandmark,side.upper()+"_"+part.upper())
x_coord_val = landmarks[coord.value].x
y_coord_val = landmarks[coord.value].y
return [x_coord_val, y_coord_val]
def calculate_angle(self, a, b, c):
a = np.array(a)
b = np.array(b)
c = np.array(c)
radians = math.atan2(c[1]-b[1], c[0]-b[0]) - math.atan2(a[1]-b[1], a[0]-b[0])
angle = np.abs(radians*180.0/np.pi)
if angle > 180.0:
angle = 360 - angle
return angle
def viz_joint_angle(self, image, angle, joint):
cv2.putText(image, str(round(angle, 2)),
tuple(np.multiply(joint, [640, 480]).astype(int)),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255,255,255), 2, cv2.LINE_AA)
# Define Streamlit app
def main():
st.title("Real-time Exercise Detection")
video_file = st.file_uploader("Upload a video file", type=["mp4", "avi"])
if video_file is not None:
video_processor = VideoProcessor()
output_video = video_processor.process_video(video_file)
video_file = open(output_video, 'rb')
video_bytes = video_file.read()
st.video(video_bytes)
if __name__ == "__main__":
main()