File size: 6,813 Bytes
d7717b4 d035eb2 d7717b4 d035eb2 d7717b4 d035eb2 226dd1b d7717b4 5ce59f6 ad457bf 226dd1b 7849dfa 5ce59f6 f9d5aed 5ce59f6 226dd1b 7849dfa 5ce59f6 226dd1b 5ce59f6 ad457bf 292f81f d035eb2 292f81f d035eb2 4e1803a d035eb2 4e1803a 94b741a d035eb2 94b741a c7a93a0 94b741a d035eb2 94b741a d035eb2 94b741a d035eb2 94b741a d035eb2 94b741a d035eb2 94b741a d035eb2 94b741a d035eb2 94b741a d035eb2 94b741a d035eb2 399e950 94b741a d035eb2 292f81f d7717b4 bbe236d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 |
import streamlit as st
import pickle
import pandas as pd
from catboost import CatBoostClassifier
# Load the trained model and unique values from the pickle file
with open('model_and_key_components.pkl', 'rb') as file:
saved_components = pickle.load(file)
model = saved_components['model']
unique_values = saved_components['unique_values']
# Define the Streamlit app
def main():
st.title("Employee Attrition Prediction App π΅οΈββοΈ")
st.sidebar.title("Model Settings βοΈ")
# Sidebar inputs
with st.sidebar.expander("View Unique Values π"):
st.write("Unique values for each feature:")
for column, values in unique_values.items():
st.write(f"- {column}: {values}")
# Main content
st.write("Welcome to the Employee Attrition Prediction App! π")
st.write("This app helps HR practitioners predict employee attrition using a trained CatBoost model.")
st.write("Please provide the following information to make a prediction:")
# Define layout with three columns
col1, col2, col3 = st.columns(3)
# Column 1
with col1:
age = st.number_input("Age", min_value=18, max_value=70)
monthly_income = st.number_input("Monthly Income")
num_companies_worked = st.number_input("Number of Companies Worked")
percent_salary_hike = st.number_input("Percent Salary Hike", min_value=0, max_value=25)
training_times_last_year = st.number_input("Training Times Last Year", min_value=0, max_value=6)
# Column 2
with col2:
department = st.selectbox("Department", ['Sales', 'Research & Development', 'Human Resources'])
environment_satisfaction = st.selectbox("Environment Satisfaction", [1, 2, 3, 4])
job_role = st.selectbox("Job Role", ['Sales Executive', 'Research Scientist', 'Laboratory Technician',
'Manufacturing Director', 'Healthcare Representative', 'Manager',
'Sales Representative', 'Research Director', 'Human Resources'])
job_satisfaction = st.selectbox("Job Satisfaction", [1, 2, 3, 4])
work_life_balance = st.selectbox("Work Life Balance", [1, 2, 3, 4])
# Column 3
with col3:
over_time = st.checkbox("Over Time")
relationship_satisfaction = st.selectbox("Relationship Satisfaction", [1, 2, 3, 4])
years_since_last_promotion = st.number_input("Years Since Last Promotion")
years_with_curr_manager = st.number_input("Years With Current Manager")
# Predict button
if st.button("Predict π"):
# Create a DataFrame to hold the user input data
input_data = pd.DataFrame({
'Age': [age],
'Department': [department],
'EnvironmentSatisfaction': [environment_satisfaction],
'JobRole': [job_role],
'JobSatisfaction': [job_satisfaction],
'MonthlyIncome': [monthly_income],
'NumCompaniesWorked': [num_companies_worked],
'OverTime': [over_time],
'PercentSalaryHike': [percent_salary_hike],
'RelationshipSatisfaction': [relationship_satisfaction],
'TrainingTimesLastYear': [training_times_last_year],
'WorkLifeBalance': [work_life_balance],
'YearsSinceLastPromotion': [years_since_last_promotion],
'YearsWithCurrManager': [years_with_curr_manager]
})
# Reorder columns to match the expected order
input_data = input_data[['Age', 'Department', 'EnvironmentSatisfaction', 'JobRole', 'JobSatisfaction',
'MonthlyIncome', 'NumCompaniesWorked', 'OverTime', 'PercentSalaryHike',
'RelationshipSatisfaction', 'TrainingTimesLastYear', 'WorkLifeBalance',
'YearsSinceLastPromotion', 'YearsWithCurrManager']]
# Make predictions
prediction = model.predict(input_data)
probability = model.predict_proba(input_data)[:, 1]
# Display prediction probability
if prediction[0] == 1:
st.subheader("Prediction Probability π")
st.write(f"The probability of the employee leaving is: {probability[0]*100:.2f}%")
# Display characteristic-based recommendations
st.subheader("Recommendations for Retaining The Employee π‘:")
if job_satisfaction == 1 or environment_satisfaction == 1:
st.markdown("- **Job and Environment Satisfaction**: Enhance job and environment satisfaction through initiatives such as recognition programs and improving workplace conditions.")
if years_since_last_promotion > 5:
st.markdown("- **Opportunities for Advancement**: Implement a transparent promotion policy and provide opportunities for career advancement.")
if years_with_curr_manager > 5:
st.markdown("- **Change in Reporting Structure**: Offer opportunities for a change in reporting structure to prevent stagnation and promote growth.")
if percent_salary_hike < 5:
st.markdown("- **Salary and Benefits Adjustment**: Consider adjusting salary and benefits packages to remain competitive and reward employee loyalty.")
if training_times_last_year < 2:
st.markdown("- **Employee Development**: Invest in employee development through training programs and continuous learning opportunities.")
if over_time:
st.markdown("- **Workload Evaluation**: Evaluate workload distribution and consider implementing measures to prevent overwork, such as workload balancing and flexible scheduling.")
if relationship_satisfaction == 1:
st.markdown("- **Positive Work Environment**: Foster positive relationships and a supportive work environment through team-building activities and open communication channels.")
if monthly_income < 5000:
st.markdown("- **Compensation Review**: Review compensation structures and adjust salaries to align with industry standards and employee expectations.")
if num_companies_worked > 5:
st.markdown("- **Address High Turnover**: Identify reasons for high turnover and address issues related to job stability, career progression, and organizational culture.")
if work_life_balance == 1:
st.markdown("- **Work-Life Balance Initiatives**: Promote work-life balance initiatives, such as flexible work arrangements and wellness programs, to support employee well-being.")
# General recommendation for all negative predictions
st.markdown("- **Exit Interviews**: Conduct exit interviews to gather feedback and identify areas for improvement in retention strategies.")
if __name__ == "__main__":
main() |