rasmodev commited on
Commit
4194c98
Β·
verified Β·
1 Parent(s): d035eb2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +47 -1
app.py CHANGED
@@ -1,3 +1,4 @@
 
1
  import streamlit as st
2
  import pickle
3
  import pandas as pd
@@ -10,6 +11,51 @@ with open('model_and_key_components.pkl', 'rb') as file:
10
  model = saved_components['model']
11
  unique_values = saved_components['unique_values']
12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  # Define the Streamlit app
14
  def main():
15
  st.title("Employee Attrition Prediction App πŸ•΅οΈβ€β™‚οΈ")
@@ -55,7 +101,7 @@ def main():
55
  years_with_curr_manager = st.number_input("Years With Current Manager")
56
 
57
  # Predict button
58
- if st.button("Predict πŸ“Š"):
59
 
60
  # Create a DataFrame to hold the user input data
61
  input_data = pd.DataFrame({
 
1
+ #Import Relevant Libraries
2
  import streamlit as st
3
  import pickle
4
  import pandas as pd
 
11
  model = saved_components['model']
12
  unique_values = saved_components['unique_values']
13
 
14
+ # Page Title with Style
15
+ st.markdown(
16
+ f"""
17
+ <div style="text-align: center;">
18
+ <h1 style="color: #800000;">πŸ‘₯ Employee Attrition Prediction App</h1>
19
+ </div>
20
+ """,
21
+ unsafe_allow_html=True
22
+ )
23
+
24
+ # Welcome Message with Style (Centered)
25
+ st.markdown(
26
+ f"""
27
+ <div style="text-align: center;">
28
+ <p>πŸ‘‹ Welcome to the Employee Attrition Prediction App!</p>
29
+ </div>
30
+ """,
31
+ unsafe_allow_html=True
32
+ )
33
+
34
+ # Sepsis Information
35
+ st.markdown(
36
+ """
37
+ **Employee attrition** refers to the phenomenon of employees leaving their jobs for various reasons. It's crucial for organizations to predict attrition to retain valuable talent.
38
+ """
39
+ )
40
+
41
+ # Link to Detailed Article on Employee Attrition
42
+ st.markdown("πŸ”— **Learn more about employee attrition from [AIHR](https://www.aihr.com/wp-content/uploads/Reasons-for-Employee-Attrition.png)**")
43
+
44
+ st.markdown("---")
45
+
46
+ # Main content
47
+ st.image("https://www.aihr.com/wp-content/uploads/Reasons-for-Employee-Attrition.png")
48
+
49
+ # Additional Information for Sample Prediction
50
+ st.write("πŸ“Š To make a sample prediction, you can refer to the training dataset information available in the sidebar or input the information of the employee whose attrition you want to predict.")
51
+
52
+ # About Section with Style
53
+ st.sidebar.title("ℹ️ About")
54
+ st.sidebar.info(
55
+ "This app predicts employee attrition using machine learning on HR data, aiding HR professionals in retention strategies. "
56
+ "It utilizes a machine learning model trained on an employee attrition dataset."
57
+ )
58
+
59
  # Define the Streamlit app
60
  def main():
61
  st.title("Employee Attrition Prediction App πŸ•΅οΈβ€β™‚οΈ")
 
101
  years_with_curr_manager = st.number_input("Years With Current Manager")
102
 
103
  # Predict button
104
+ if st.button("Predict Employee Attrition πŸ“Š"):
105
 
106
  # Create a DataFrame to hold the user input data
107
  input_data = pd.DataFrame({