Spaces:
Sleeping
Sleeping
File size: 2,604 Bytes
6ae89f6 891dffa 6ae89f6 23809d3 6ae89f6 891dffa 6ae89f6 891dffa 6ae89f6 891dffa 6ae89f6 891dffa 6ae89f6 891dffa 6ae89f6 891dffa 6ae89f6 891dffa 6ae89f6 891dffa 6ae89f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
import pandas as pd
import streamlit as st
import numpy as np
import pickle
from sklearn.preprocessing import MinMaxScaler
# Load the scaler and model
with open('model_and_scaler.pkl', 'rb') as file:
model_and_scaler = pickle.load(file)
# Extract the scaler and model
scaler = model_and_scaler['scaler']
rf_model = model_and_scaler['model']
st.image("https://pbs.twimg.com/media/DywhyJiXgAIUZej?format=jpg&name=medium")
st.title("Store Sales Prediction App")
st.caption("This app predicts sales patterns in different stores based on the inputs.")
# Sidebar with input field descriptions
st.sidebar.header("Description of The Required Input Fields")
st.sidebar.markdown("**Shop ID**: Unique identifier for a specific shop.")
st.sidebar.markdown("**Item ID**: Unique identifier for a product.")
st.sidebar.markdown("**Item Price**: Current price of an item.")
st.sidebar.markdown("**Item Category ID**: Unique identifier for an item category.")
st.sidebar.markdown("**Total Sales**: The total daily sales.")
st.sidebar.markdown("**Day**: Day the product was purchased.")
st.sidebar.markdown("**Month**: Month the product was purchased.")
st.sidebar.markdown("**Year**: Year the product was purchased.")
# Create the input fields
input_data = {}
col1, col2 = st.columns(2)
with col1:
input_data['shop_id'] = st.slider("Shop ID", 0, 54)
input_data['item_id'] = st.slider("Item ID", 100000, 1022169)
input_data['item_price'] = st.number_input("Item Price", 0, 153990)
input_data['item_category_id'] = st.slider("Item Category ID", 0, 166)
with col2:
input_data['day'] = st.slider("Day", 1, 31)
input_data['month'] = st.slider("Month", 1, 12)
input_data['year'] = st.number_input("Year", 2018, 2019, 2020)
# Create a button to make a prediction
if st.button("Predict"):
# Feature Scaling
numerical_cols = ['shop_id', 'item_id', 'item_price', 'item_category_id', 'total_sales', 'day', 'month', 'year', 'day_of_week']
scaler = MinMaxScaler()
input_df = pd.DataFrame(input_data, index=[0])
input_df_scaled = scaler.fit_transform(input_df[numerical_cols])
input_df_scaled = pd.DataFrame(input_df_scaled, columns=numerical_cols)
# Load the scaler and model
with open('model_and_scaler.pkl', 'rb') as file:
model_and_scaler = pickle.load(file)
# Extract the model
rf_model = model_and_scaler['model']
# Make predictions using the trained model
predictions = rf_model.predict(input_df_scaled)
# Display the predicted sales value to the user
st.write("The predicted sales are:", predictions[0]) |