ratulsur commited on
Commit
955a169
Β·
verified Β·
1 Parent(s): 04c79aa

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +202 -0
app.py ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import plotly.graph_objects as go
3
+ from datetime import datetime, timedelta
4
+ import pandas as pd
5
+ import numpy as np
6
+
7
+ from utils.patterns import identify_patterns, calculate_technical_indicators
8
+ from utils.predictions import predict_movement
9
+ from utils.trading import fetch_market_data, is_market_open
10
+
11
+ # Page configuration
12
+ st.set_page_config(
13
+ page_title="Trading Pattern Analysis",
14
+ page_icon="πŸ“ˆ",
15
+ layout="wide"
16
+ )
17
+
18
+ # Load custom CSS
19
+ with open('styles/custom.css') as f:
20
+ st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True)
21
+
22
+ # Pattern descriptions from the uploaded file
23
+ PATTERN_DESCRIPTIONS = {
24
+ 'HAMMER': 'Small body near the top with long lower wick, indicating buying pressure overcoming selling pressure.',
25
+ 'INVERTED_HAMMER': 'Small body with long upper wick after downtrend, indicating resistance but potential upward movement.',
26
+ 'PIERCING_LINE': 'Two-candlestick pattern where second closes above midpoint of first, signaling bullish shift.',
27
+ 'BULLISH_ENGULFING': 'Small bearish candle followed by larger bullish candle that engulfs previous one.',
28
+ 'MORNING_STAR': 'Three-candlestick pattern with bearish, small-bodied, and bullish candle indicating reversal.',
29
+ 'THREE_WHITE_SOLDIERS': 'Three consecutive long bullish candles with small/no wicks, showing strong buying pressure.',
30
+ 'BULLISH_HARAMI': 'Small bullish candle within body of preceding large bearish candle.',
31
+ 'HANGING_MAN': 'Small body at top with long lower wick, signaling potential reversal.',
32
+ 'DARK_CLOUD_COVER': 'Two-candlestick pattern with bearish closing below midpoint of previous bullish.',
33
+ 'BEARISH_ENGULFING': 'Small bullish candle followed by larger bearish candle that engulfs it.',
34
+ 'EVENING_STAR': 'Three-candlestick pattern with bullish, small-bodied, and bearish candle.',
35
+ 'THREE_BLACK_CROWS': 'Three consecutive bearish candles showing strong selling.',
36
+ 'SHOOTING_STAR': 'Small body with long upper wick, signaling resistance.',
37
+ 'DOJI': 'Small body with wicks, showing market indecision.',
38
+ 'DRAGONFLY_DOJI': 'Doji with long lower wick, showing buying pressure at bottom.',
39
+ 'GRAVESTONE_DOJI': 'Doji with long upper wick, showing selling pressure at top.'
40
+ }
41
+
42
+ # Sidebar
43
+ st.sidebar.title("Trading Controls")
44
+
45
+ # Market Status Indicator
46
+ market_open = is_market_open()
47
+ status_color = "🟒" if market_open else "πŸ”΄"
48
+ market_status = "Market Open" if market_open else "Market Closed"
49
+ st.sidebar.write(f"{status_color} {market_status}")
50
+
51
+ symbol = st.sidebar.text_input("Symbol", value="AAPL", help="Enter a valid stock symbol (e.g., AAPL, MSFT)")
52
+ timeframe = st.sidebar.selectbox(
53
+ "Timeframe",
54
+ ["30m", "1h", "2h", "4h"],
55
+ index=0,
56
+ help="Select analysis timeframe (each candle represents 15 minutes)"
57
+ )
58
+
59
+ # Add auto-refresh option
60
+ auto_refresh = st.sidebar.checkbox("Auto-refresh data", value=True)
61
+ if auto_refresh:
62
+ st.sidebar.write("Updates every minute")
63
+ st.rerun() # Use st.rerun() instead of experimental_rerun()
64
+
65
+ # Main content
66
+ st.title("Trading Pattern Analysis")
67
+
68
+ try:
69
+ # Fetch and process data
70
+ with st.spinner('Fetching market data...'):
71
+ df = fetch_market_data(symbol, period='1d', interval='15m')
72
+
73
+ if len(df) >= 2:
74
+ df = calculate_technical_indicators(df)
75
+ patterns = identify_patterns(df)
76
+
77
+ # Create candlestick chart
78
+ fig = go.Figure(data=[go.Candlestick(
79
+ x=df.index,
80
+ open=df['Open'],
81
+ high=df['High'],
82
+ low=df['Low'],
83
+ close=df['Close']
84
+ )])
85
+
86
+ # Update layout for dark theme
87
+ fig.update_layout(
88
+ template="plotly_dark",
89
+ plot_bgcolor="#252525",
90
+ paper_bgcolor="#252525",
91
+ xaxis_rangeslider_visible=False,
92
+ height=600,
93
+ title=f"{symbol} - Live Market Data ({timeframe} timeframe)"
94
+ )
95
+
96
+ # Display chart
97
+ st.plotly_chart(fig, use_container_width=True)
98
+
99
+ # Pattern Analysis
100
+ col1, col2 = st.columns(2)
101
+
102
+ with col1:
103
+ st.subheader("Pattern Analysis")
104
+ if not patterns.empty and len(patterns) > 0:
105
+ latest_patterns = patterns.iloc[-1]
106
+ detected_patterns = latest_patterns[latest_patterns == 1].index.tolist()
107
+
108
+ if detected_patterns:
109
+ st.write("Detected Patterns:")
110
+ for pattern in detected_patterns:
111
+ st.markdown(f"""
112
+ <div class="pattern-container">
113
+ <h4>β€’ {pattern.replace('_', ' ')}</h4>
114
+ <p>{PATTERN_DESCRIPTIONS.get(pattern, '')}</p>
115
+ </div>
116
+ """, unsafe_allow_html=True)
117
+ else:
118
+ st.info("No patterns detected in current timeframe")
119
+ else:
120
+ st.write("No pattern data available")
121
+
122
+ with col2:
123
+ st.subheader("Prediction")
124
+ if len(df) >= 30:
125
+ prediction, probability = predict_movement(df)
126
+
127
+ if prediction is not None and probability is not None:
128
+ direction = "Upward" if prediction else "Downward"
129
+ confidence = probability[1] if prediction else probability[0]
130
+
131
+ direction_class = "profit" if direction == "Upward" else "loss"
132
+ st.markdown(f"""
133
+ <div class="prediction-container">
134
+ <h3 class="{direction_class}">Predicted Movement: {direction}</h3>
135
+ <p>Confidence: {confidence:.2%}</p>
136
+ <p>(Next 15-minute prediction)</p>
137
+ </div>
138
+ """, unsafe_allow_html=True)
139
+ else:
140
+ st.write("Could not generate prediction")
141
+ else:
142
+ st.write("Insufficient data for prediction")
143
+
144
+ # Technical Indicators
145
+ st.subheader("Technical Indicators")
146
+ col3, col4, col5 = st.columns(3)
147
+
148
+ with col3:
149
+ last_rsi = df['RSI'].iloc[-1] if 'RSI' in df else None
150
+ prev_rsi = df['RSI'].iloc[-2] if 'RSI' in df and len(df) > 1 else None
151
+
152
+ if last_rsi is not None and prev_rsi is not None:
153
+ delta = last_rsi - prev_rsi
154
+ delta_color = "profit" if delta > 0 else "loss"
155
+ st.markdown(f"""
156
+ <div class="metric-container">
157
+ <h4>RSI</h4>
158
+ <p>{last_rsi:.2f}</p>
159
+ <p class="{delta_color}">({delta:+.2f})</p>
160
+ </div>
161
+ """, unsafe_allow_html=True)
162
+
163
+ with col4:
164
+ last_macd = df['MACD'].iloc[-1] if 'MACD' in df else None
165
+ prev_macd = df['MACD'].iloc[-2] if 'MACD' in df and len(df) > 1 else None
166
+
167
+ if last_macd is not None and prev_macd is not None:
168
+ delta = last_macd - prev_macd
169
+ delta_color = "profit" if delta > 0 else "loss"
170
+ st.markdown(f"""
171
+ <div class="metric-container">
172
+ <h4>MACD</h4>
173
+ <p>{last_macd:.2f}</p>
174
+ <p class="{delta_color}">({delta:+.2f})</p>
175
+ </div>
176
+ """, unsafe_allow_html=True)
177
+
178
+ with col5:
179
+ last_sma = df['SMA_20'].iloc[-1] if 'SMA_20' in df else None
180
+ last_close = df['Close'].iloc[-1] if len(df) > 0 else None
181
+
182
+ if last_sma is not None and last_close is not None:
183
+ delta = last_close - last_sma
184
+ delta_color = "profit" if delta > 0 else "loss"
185
+ st.markdown(f"""
186
+ <div class="metric-container">
187
+ <h4>15-min SMA</h4>
188
+ <p>{last_sma:.2f}</p>
189
+ <p class="{delta_color}">({delta:+.2f})</p>
190
+ </div>
191
+ """, unsafe_allow_html=True)
192
+ else:
193
+ st.warning("Insufficient data points. This could be because the market is closed or the selected timeframe is too short.")
194
+
195
+ except Exception as e:
196
+ st.error(f"Error: {str(e)}")
197
+ if "Connection Error" in str(e):
198
+ st.warning("Unable to connect to market data. Please check your internet connection and try again.")
199
+ elif "not found" in str(e):
200
+ st.warning("Invalid symbol. Please enter a valid stock symbol.")
201
+ else:
202
+ st.info("If the market is closed, you can still view the most recent trading data.")