File size: 4,327 Bytes
2d75c41
c7b74ee
 
 
2d75c41
c7b74ee
 
2d75c41
c7b74ee
2d75c41
 
 
 
9cd5b33
 
2d75c41
9cd5b33
2d75c41
c7b74ee
 
2d75c41
 
c7b74ee
2d75c41
 
c7b74ee
2d75c41
9cd5b33
c7b74ee
2d75c41
 
 
 
 
 
 
 
 
6f924cf
 
 
 
 
2d75c41
6f924cf
2d75c41
 
 
 
 
 
 
 
c7b74ee
 
 
 
2d75c41
 
 
 
 
 
 
 
 
 
6f924cf
 
2d75c41
6f924cf
 
2d75c41
 
c7b74ee
2d75c41
c7b74ee
 
 
2d75c41
c7b74ee
2d75c41
c7b74ee
 
 
 
 
 
2d75c41
 
 
c7b74ee
 
2d75c41
 
c7b74ee
 
2d75c41
 
c7b74ee
 
 
 
 
2d75c41
c7b74ee
 
 
 
 
 
2d75c41
c7b74ee
 
 
2d75c41
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import streamlit as st
import cv2
import numpy as np
import time
import os
from keras.models import load_model
from PIL import Image
import tempfile

# Larger title
st.markdown("<h1 style='text-align: center;'>Emotion Detection with Face Recognition</h1>", unsafe_allow_html=True)

# Smaller subtitle
st.markdown("<h3 style='text-align: center;'>angry, fear, happy, neutral, sad, surprise</h3>", unsafe_allow_html=True)

start = time.time()

# Load the emotion model
@st.cache_resource
def load_emotion_model():
    model = load_model('CNN_Model_acc_75.h5')  # Ensure this file is in your Space
    return model

model = load_emotion_model()
print("time taken to load model: ", time.time() - start)

# Emotion labels
emotion_labels = ['angry', 'fear', 'happy', 'neutral', 'sad', 'surprise']

# Load known faces (from images in a folder)
known_faces = []
known_names = []

def load_known_faces():
    folder_path = "known_faces"  # Place your folder with known faces here
    for image_name in os.listdir(folder_path):
        if image_name.endswith(('.jpg', '.jpeg', '.png')):
            image_path = os.path.join(folder_path, image_name)
            image = cv2.imread(image_path)
            gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
            faces = cv2.face.LBPHFaceRecognizer_create()
            faces.train([gray], np.array([0]))  # This is simplified, train with multiple images
            encoding = faces.getHistograms()
            if encoding:
                known_faces.append(encoding)
                known_names.append(image_name.split('.')[0])  # Assuming file name is the person's name
load_known_faces()

# Face detection using OpenCV
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
img_shape = 48

def process_frame(frame):
    gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    faces = face_cascade.detectMultiScale(gray_frame, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))

    for (x, y, w, h) in faces:
        roi_gray = gray_frame[y:y+h, x:x+w]
        roi_color = frame[y:y+h, x:x+w]
        face_roi = cv2.resize(roi_color, (img_shape, img_shape))
        face_roi = np.expand_dims(face_roi, axis=0)
        face_roi = face_roi / float(img_shape)

        # Emotion detection
        predictions = model.predict(face_roi)
        emotion = emotion_labels[np.argmax(predictions[0])]

        # Face recognition using LBPH
        label, confidence = cv2.face.LBPHFaceRecognizer_create().predict(roi_gray)
        name = "Unknown"
        if confidence < 100:
            name = known_names[label]

        # Draw bounding box and label on the frame
        cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
        cv2.putText(frame, f"{name} - {emotion}", (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)

    return frame

# Video feed
def video_feed(video_source):
    frame_placeholder = st.empty()  # This placeholder will be used to replace frames in-place

    while True:
        ret, frame = video_source.read()
        if not ret:
            break

        frame = process_frame(frame)

        # Display the frame in the placeholder
        frame_placeholder.image(frame, channels="BGR", use_column_width=True)

# Sidebar for video or image upload
upload_choice = st.sidebar.radio("Choose input source", ["Upload Video", "Upload Image", "Camera"])

if upload_choice == "Camera":
    # Access camera
    video_source = cv2.VideoCapture(0)
    video_feed(video_source)

elif upload_choice == "Upload Video":
    uploaded_video = st.file_uploader("Upload Video", type=["mp4", "mov", "avi", "mkv", "webm"])
    if uploaded_video:
        # Temporarily save the video to disk
        with tempfile.NamedTemporaryFile(delete=False) as tfile:
            tfile.write(uploaded_video.read())
            video_source = cv2.VideoCapture(tfile.name)
            video_feed(video_source)

elif upload_choice == "Upload Image":
    uploaded_image = st.file_uploader("Upload Image", type=["png", "jpg", "jpeg", "gif"])
    if uploaded_image:
        image = Image.open(uploaded_image)
        frame = np.array(image)
        frame = process_frame(frame)
        st.image(frame, caption='Processed Image', use_column_width=True)

st.sidebar.write("Emotion Labels: Angry, Fear, Happy, Neutral, Sad, Surprise")