File size: 2,636 Bytes
30f323a
 
 
435e003
 
30f323a
 
 
 
 
 
 
 
 
 
0f10313
30f323a
 
 
 
435e003
 
30f323a
 
0f10313
30f323a
 
 
 
0f10313
30f323a
0f10313
30f323a
 
 
 
 
8002dec
 
30f323a
7fb9c4d
0f10313
30f323a
435e003
0f10313
30f323a
 
 
1428efb
38575dc
 
 
 
30f323a
 
5eaf574
1428efb
435e003
30f323a
 
0f10313
435e003
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import gradio as gr
from huggingface_hub import InferenceClient

DESCRIPTION = """ # <center><b>Mascot⚡</b></center>
        ### <center>A personal Assistant of Easy DIY Mart for YOU
        """

MORE = """ ## TRY Other Models
        ### Instant Video: Create Amazing Videos in 5 Second -> https://huggingface.co/spaces/KingNish/Instant-Video
        ### Instant Image: 4k images in 5 Second -> https://huggingface.co/spaces/KingNish/Instant-Image
        """

Fast = """## Fastest Model"""

Complex = """## Best in Complex Question"""

Detail = """## Best for Detailed Generation or Long Answers"""

client1 = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")

system_instructions1 = "[SYSTEM] Answer as Real Mascot MASCOT, Made by 'Easy DIY Mart', Keep conversation very short, clear, friendly and concise. The text provided is a request for a specific type of response from you, the virtual assistant. The request asks you to provide friendly responses as if You are the character Mascot, made by 'Easy DIY Mart.' The expectation is that I will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by the user and not an AI-powered assistant. [USER]"


async def generate1(prompt):
    generate_kwargs = dict(
        temperature=0.6,
        max_new_tokens=256,
        top_p=0.95,
        repetition_penalty=1,
        do_sample=True,
        seed=42,
    )
    formatted_prompt = system_instructions1 + prompt + "[JARVIS]"
    stream = client1.text_generation(
        formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True)
    output = ""
    for response in stream:
        if response.token.text != '</s>':
            output += response.token.text

    yield output


with gr.Blocks(css="style.css") as demo:
    gr.Markdown(DESCRIPTION)
    with gr.Row():
        user_input = gr.Textbox(label="Prompt", value="What is Wikipedia")
        input_text = gr.Textbox(label="Input Text", elem_id="important")
        output_text = gr.Textbox(label="Output")
        # output_audio = gr.Audio(label="JARVIS", type="filepath",
        #                 interactive=False,
        #                 autoplay=True,
        #                 elem_classes="audio")
    with gr.Row():
        translate_btn = gr.Button("Response")
        translate_btn.click(fn=generate1, inputs=user_input,
                            outputs=output_text, api_name="translate")

gr.Markdown(MORE)

if __name__ == "__main__":
    demo.queue(max_size=200).launch()