Spaces:
Sleeping
Sleeping
from llama_cpp import Llama | |
import gradio as gr | |
llm = Llama.from_pretrained( | |
repo_id="rcarioniporras/model_modelcentric_llama_gguf", | |
filename="unsloth.Q4_K_M.gguf", | |
) | |
def predict(message, history): | |
messages = [{"role": "system", "content": "You are a helpful assistant who answers questions in a concise but thorough way. Prioritize clarity and usefulness in all interactions."}] | |
for user_message, bot_message in history: | |
if user_message: | |
messages.append({"role": "user", "content": user_message}) | |
if bot_message: | |
messages.append({"role": "assistant", "content": bot_message}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
for chunk in llm.create_chat_completion( | |
stream=True, | |
messages=messages, | |
): | |
part = chunk["choices"][0]["delta"].get("content", None) | |
if part: | |
response += part | |
yield response | |
conversation_starters = [ | |
{"text": "What is object-oriented programming (OOP), and what are its four main principles?"}, | |
{"text": "Compare the stack and queue data structures."}, | |
{"text": "Simplify the expression 3(x+4)−2(2x−1)."}, | |
{"text": "What are some fun facts about space?"} | |
] | |
demo = gr.ChatInterface(fn=predict, theme="Shivi/calm_seafoam") | |
if __name__ == "__main__": | |
demo.launch() |