File size: 1,008 Bytes
d8c99c6
052012f
cc07ecd
 
 
dc6f6d7
 
65b75e6
6aa7c2f
65e2225
dc6f6d7
65e2225
052012f
 
65e2225
 
 
363ebf2
65e2225
 
 
 
 
 
052012f
 
65e2225
 
 
 
 
 
 
dc6f6d7
65e2225
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import gradio as gr

# Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2")
model = AutoModelForCausalLM.from_pretrained("microsoft/phi-2")

def eval_text(text):
    # Encode the input text
    text = "Eres un experto en lenguaje claro. Evalúa el texto siguiente y di si es muy claro, claro o poco claro. El texto es este: " + text
    input_ids = tokenizer.encode(text, return_tensors="pt")

# Generate text
    out = model.generate(
        input_ids,
        min_length=100,
        max_length=750,
        eos_token_id=5,
        pad_token_id=1,
        top_k=10,
        top_p=0.0,
        no_repeat_ngram_size=5
    )

# Decode the generated output
    generated_text = list(map(tokenizer.decode, out))[0]
    print(generated_text)


    return(f"Result: {generation[0]['generated_text']}")


demo = gr.Interface(fn=eval_text, inputs="text", outputs="text", title="microsoft/phi-2")
    
demo.launch(share=True)