File size: 10,186 Bytes
0611c31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2cb9dec
 
fdc226e
0611c31
2cb9dec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc82930
 
2cb9dec
 
 
 
bc82930
e0b1978
 
2cb9dec
 
 
 
 
bc82930
 
 
 
e0b1978
 
bc82930
2cb9dec
 
 
 
 
fdc226e
0611c31
fdc226e
 
0611c31
fdc226e
0611c31
fdc226e
 
0611c31
 
 
fdc226e
 
0611c31
fdc226e
 
0611c31
fdc226e
0611c31
 
fdc226e
 
 
 
 
 
0611c31
fdc226e
 
0611c31
 
 
 
 
 
e0b1978
 
0611c31
 
 
 
 
 
 
 
 
 
2cb9dec
fdc226e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0b1978
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
# from openai import AsyncOpenAI
# import logging
# from typing import List, Dict, Union
# import pandas as pd
# import asyncio
# from src.api.exceptions import OpenAIError

# # Set up structured logging
# logging.basicConfig(
#     level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
# )
# logger = logging.getLogger(__name__)


# class EmbeddingService:
#     def __init__(
#         self,
#         openai_api_key: str,
#         model: str = "text-embedding-3-small",
#         batch_size: int = 10,
#         max_concurrent_requests: int = 10,  # Limit to 10 concurrent requests
#     ):
#         self.client = AsyncOpenAI(api_key=openai_api_key)
#         self.model = model
#         self.batch_size = batch_size
#         self.semaphore = asyncio.Semaphore(max_concurrent_requests)  # Rate limiter
#         self.total_requests = 0  # Total number of requests to process
#         self.completed_requests = 0  # Number of completed requests

#     async def get_embedding(self, text: str) -> List[float]:
#         """Generate embeddings for the given text using OpenAI."""
#         text = text.replace("\n", " ")
#         try:
#             async with self.semaphore:  # Acquire a semaphore slot
#                 response = await self.client.embeddings.create(
#                     input=[text], model=self.model
#                 )
#                 self.completed_requests += 1  # Increment completed requests
#                 self._log_progress()  # Log progress
#                 return response.data[0].embedding
#         except Exception as e:
#             logger.error(f"Failed to generate embedding: {e}")
#             raise OpenAIError(f"OpenAI API error: {e}")

#     async def create_embeddings(
#         self,
#         data: Union[pd.DataFrame, List[str]],
#         target_column: str = None,
#         output_column: str = "embeddings",
#     ) -> Union[pd.DataFrame, List[List[float]]]:
#         """
#         Create embeddings for either a DataFrame or a list of strings.

#         Args:
#             data: Either a DataFrame or a list of strings.
#             target_column: The column in the DataFrame to generate embeddings for (required if data is a DataFrame).
#             output_column: The column to store embeddings in the DataFrame (default: "embeddings").

#         Returns:
#             If data is a DataFrame, returns the DataFrame with the embeddings column.
#             If data is a list of strings, returns a list of embeddings.
#         """
#         if isinstance(data, pd.DataFrame):
#             if not target_column:
#                 raise ValueError("target_column is required when data is a DataFrame.")
#             return await self._create_embeddings_for_dataframe(
#                 data, target_column, output_column
#             )
#         elif isinstance(data, list):
#             return await self._create_embeddings_for_texts(data)
#         else:
#             raise TypeError(
#                 "data must be either a pandas DataFrame or a list of strings."
#             )

#     async def _create_embeddings_for_dataframe(
#         self, df: pd.DataFrame, target_column: str, output_column: str
#     ) -> pd.DataFrame:
#         """Create embeddings for the target column in the DataFrame."""
#         logger.info("Generating embeddings for DataFrame...")
#         self.total_requests = len(df)  # Set total number of requests
#         self.completed_requests = 0  # Reset completed requests counter

#         batches = [
#             df[i : i + self.batch_size] for i in range(0, len(df), self.batch_size)
#         ]
#         processed_batches = await asyncio.gather(
#             *[
#                 self._process_batch(batch, target_column, output_column)
#                 for batch in batches
#             ]
#         )
#         return pd.concat(processed_batches)

#     async def _create_embeddings_for_texts(self, texts: List[str]) -> List[List[float]]:
#         """Create embeddings for a list of strings."""
#         logger.info("Generating embeddings for list of texts...")
#         self.total_requests = len(texts)  # Set total number of requests
#         self.completed_requests = 0  # Reset completed requests counter

#         batches = [
#             texts[i : i + self.batch_size]
#             for i in range(0, len(texts), self.batch_size)
#         ]
#         embeddings = []
#         for batch in batches:
#             batch_embeddings = await asyncio.gather(
#                 *[self.get_embedding(text) for text in batch]
#             )
#             embeddings.extend(batch_embeddings)
#         return embeddings

#     async def _process_batch(
#         self, df_batch: pd.DataFrame, target_column: str, output_column: str
#     ) -> pd.DataFrame:
#         """Process a batch of rows to generate embeddings."""
#         embeddings = await asyncio.gather(
#             *[self.get_embedding(row[target_column]) for _, row in df_batch.iterrows()]
#         )
#         df_batch[output_column] = embeddings
#         return df_batch

#     def _log_progress(self):
#         """Log the progress of embedding generation."""
#         progress = (self.completed_requests / self.total_requests) * 100
#         logger.info(
#             f"Progress: {self.completed_requests}/{self.total_requests} ({progress:.2f}%)"
#         )

from openai import AsyncOpenAI
import logging
from typing import List, Dict, Union
from datasets import Dataset
import asyncio
from src.api.exceptions import OpenAIError

# Set up structured logging
logging.basicConfig(
    level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger(__name__)


class EmbeddingService:
    def __init__(
        self,
        openai_api_key: str,
        model: str = "text-embedding-3-small",
        batch_size: int = 10,
        max_concurrent_requests: int = 10,  # Limit to 10 concurrent requests
    ):
        self.client = AsyncOpenAI(api_key=openai_api_key)
        self.model = model
        self.batch_size = batch_size
        self.semaphore = asyncio.Semaphore(max_concurrent_requests)  # Rate limiter
        self.total_requests = 0  # Total number of requests to process
        self.completed_requests = 0  # Number of completed requests

    async def get_embedding(self, text: str) -> List[float]:
        """Generate embeddings for the given text using OpenAI."""
        text = text.replace("\n", " ")
        try:
            async with self.semaphore:  # Acquire a semaphore slot
                response = await self.client.embeddings.create(
                    input=[text], model=self.model
                )
                self.completed_requests += 1  # Increment completed requests
                self._log_progress()  # Log progress
                return response.data[0].embedding
        except Exception as e:
            logger.error(f"Failed to generate embedding: {e}")
            raise OpenAIError(f"OpenAI API error: {e}")

    async def create_embeddings(
        self,
        data: Union[Dataset, List[str]],
        target_column: str = None,
        output_column: str = "embeddings",
    ) -> Union[Dataset, List[List[float]]]:
        """
        Create embeddings for either a Dataset or a list of strings.

        Args:
            data: Either a Dataset or a list of strings.
            target_column: The column in the Dataset to generate embeddings for (required if data is a Dataset).
            output_column: The column to store embeddings in the Dataset (default: "embeddings").

        Returns:
            If data is a Dataset, returns the Dataset with the embeddings column.
            If data is a list of strings, returns a list of embeddings.
        """
        if isinstance(data, Dataset):
            if not target_column:
                raise ValueError("target_column is required when data is a Dataset.")
            return await self._create_embeddings_for_dataset(
                data, target_column, output_column
            )
        elif isinstance(data, list):
            return await self._create_embeddings_for_texts(data)
        else:
            raise TypeError(
                "data must be either a Hugging Face Dataset or a list of strings."
            )

    async def _create_embeddings_for_dataset(
        self, dataset: Dataset, target_column: str, output_column: str
    ) -> Dataset:
        """Create embeddings for the target column in the Dataset."""
        logger.info("Generating embeddings for Dataset...")
        self.total_requests = len(dataset)  # Set total number of requests
        self.completed_requests = 0  # Reset completed requests counter

        embeddings = []
        for i in range(0, len(dataset), self.batch_size):
            batch = dataset[i : i + self.batch_size]
            batch_embeddings = await asyncio.gather(
                *[self.get_embedding(text) for text in batch[target_column]]
            )
            embeddings.extend(batch_embeddings)

        dataset = dataset.add_column(output_column, embeddings)
        return dataset

    async def _create_embeddings_for_texts(self, texts: List[str]) -> List[List[float]]:
        """Create embeddings for a list of strings."""
        logger.info("Generating embeddings for list of texts...")
        self.total_requests = len(texts)  # Set total number of requests
        self.completed_requests = 0  # Reset completed requests counter

        batches = [
            texts[i : i + self.batch_size]
            for i in range(0, len(texts), self.batch_size)
        ]
        embeddings = []
        for batch in batches:
            batch_embeddings = await asyncio.gather(
                *[self.get_embedding(text) for text in batch]
            )
            embeddings.extend(batch_embeddings)
        return embeddings

    def _log_progress(self):
        """Log the progress of embedding generation."""
        progress = (self.completed_requests / self.total_requests) * 100
        logger.info(
            f"Progress: {self.completed_requests}/{self.total_requests} ({progress:.2f}%)"
        )