File size: 5,163 Bytes
2cb9dec
 
fdc226e
2cb9dec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc82930
 
2cb9dec
 
 
 
bc82930
e0b1978
 
2cb9dec
 
 
 
 
bc82930
 
 
 
e0b1978
 
bc82930
2cb9dec
 
 
 
 
fdc226e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2cb9dec
 
fdc226e
 
e0b1978
 
 
2cb9dec
 
 
 
 
 
 
 
 
 
 
fdc226e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2cb9dec
 
 
 
 
 
 
 
 
e0b1978
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
from openai import AsyncOpenAI
import logging
from typing import List, Dict, Union
import pandas as pd
import asyncio
from src.api.exceptions import OpenAIError

# Set up structured logging
logging.basicConfig(
    level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger(__name__)


class EmbeddingService:
    def __init__(
        self,
        openai_api_key: str,
        model: str = "text-embedding-3-small",
        batch_size: int = 10,
        max_concurrent_requests: int = 10,  # Limit to 10 concurrent requests
    ):
        self.client = AsyncOpenAI(api_key=openai_api_key)
        self.model = model
        self.batch_size = batch_size
        self.semaphore = asyncio.Semaphore(max_concurrent_requests)  # Rate limiter
        self.total_requests = 0  # Total number of requests to process
        self.completed_requests = 0  # Number of completed requests

    async def get_embedding(self, text: str) -> List[float]:
        """Generate embeddings for the given text using OpenAI."""
        text = text.replace("\n", " ")
        try:
            async with self.semaphore:  # Acquire a semaphore slot
                response = await self.client.embeddings.create(
                    input=[text], model=self.model
                )
                self.completed_requests += 1  # Increment completed requests
                self._log_progress()  # Log progress
                return response.data[0].embedding
        except Exception as e:
            logger.error(f"Failed to generate embedding: {e}")
            raise OpenAIError(f"OpenAI API error: {e}")

    async def create_embeddings(
        self,
        data: Union[pd.DataFrame, List[str]],
        target_column: str = None,
        output_column: str = "embeddings",
    ) -> Union[pd.DataFrame, List[List[float]]]:
        """
        Create embeddings for either a DataFrame or a list of strings.

        Args:
            data: Either a DataFrame or a list of strings.
            target_column: The column in the DataFrame to generate embeddings for (required if data is a DataFrame).
            output_column: The column to store embeddings in the DataFrame (default: "embeddings").

        Returns:
            If data is a DataFrame, returns the DataFrame with the embeddings column.
            If data is a list of strings, returns a list of embeddings.
        """
        if isinstance(data, pd.DataFrame):
            if not target_column:
                raise ValueError("target_column is required when data is a DataFrame.")
            return await self._create_embeddings_for_dataframe(
                data, target_column, output_column
            )
        elif isinstance(data, list):
            return await self._create_embeddings_for_texts(data)
        else:
            raise TypeError(
                "data must be either a pandas DataFrame or a list of strings."
            )

    async def _create_embeddings_for_dataframe(
        self, df: pd.DataFrame, target_column: str, output_column: str
    ) -> pd.DataFrame:
        """Create embeddings for the target column in the DataFrame."""
        logger.info("Generating embeddings for DataFrame...")
        self.total_requests = len(df)  # Set total number of requests
        self.completed_requests = 0  # Reset completed requests counter

        batches = [
            df[i : i + self.batch_size] for i in range(0, len(df), self.batch_size)
        ]
        processed_batches = await asyncio.gather(
            *[
                self._process_batch(batch, target_column, output_column)
                for batch in batches
            ]
        )
        return pd.concat(processed_batches)

    async def _create_embeddings_for_texts(self, texts: List[str]) -> List[List[float]]:
        """Create embeddings for a list of strings."""
        logger.info("Generating embeddings for list of texts...")
        self.total_requests = len(texts)  # Set total number of requests
        self.completed_requests = 0  # Reset completed requests counter

        batches = [
            texts[i : i + self.batch_size]
            for i in range(0, len(texts), self.batch_size)
        ]
        embeddings = []
        for batch in batches:
            batch_embeddings = await asyncio.gather(
                *[self.get_embedding(text) for text in batch]
            )
            embeddings.extend(batch_embeddings)
        return embeddings

    async def _process_batch(
        self, df_batch: pd.DataFrame, target_column: str, output_column: str
    ) -> pd.DataFrame:
        """Process a batch of rows to generate embeddings."""
        embeddings = await asyncio.gather(
            *[self.get_embedding(row[target_column]) for _, row in df_batch.iterrows()]
        )
        df_batch[output_column] = embeddings
        return df_batch

    def _log_progress(self):
        """Log the progress of embedding generation."""
        progress = (self.completed_requests / self.total_requests) * 100
        logger.info(
            f"Progress: {self.completed_requests}/{self.total_requests} ({progress:.2f}%)"
        )