File size: 5,425 Bytes
6f4f307
a106258
2cb9dec
4f1c09c
2cb9dec
4f1c09c
a106258
 
 
 
 
2cb9dec
 
 
 
 
 
 
 
 
a106258
 
 
 
 
 
0611c31
2cb9dec
 
 
0611c31
2cb9dec
 
 
 
 
0611c31
2cb9dec
 
 
cccaa2c
 
 
 
 
0611c31
2cb9dec
 
 
 
 
6f4f307
 
 
 
 
0611c31
6f4f307
2cb9dec
6f4f307
 
 
 
0611c31
6f4f307
0611c31
 
 
6f4f307
 
 
4f1c09c
 
 
0611c31
 
6f4f307
 
0611c31
6f4f307
0611c31
6f4f307
 
 
 
 
0611c31
6f4f307
0611c31
2cb9dec
 
 
 
a106258
 
2cb9dec
a106258
 
 
2cb9dec
a106258
 
65997b1
 
fdc0b3d
65997b1
fdc0b3d
65997b1
fdc0b3d
65997b1
 
 
 
 
 
 
fdc0b3d
65997b1
 
fdc0b3d
65997b1
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
from datasets import Dataset, load_dataset, concatenate_datasets
from huggingface_hub import HfApi, HfFolder
import logging
import os
from typing import Optional, Dict, List
from src.api.services.embedding_service import EmbeddingService
from src.api.exceptions import (
    DatasetNotFoundError,
    DatasetPushError,
    DatasetDeleteError,
)

# Set up structured logging
logging.basicConfig(
    level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger(__name__)


class HuggingFaceService:
    def __init__(self, hf_token: Optional[str] = None):
        """Initialize the HuggingFaceService with an optional token."""
        self.hf_api = HfApi()
        if hf_token:
            HfFolder.save_token(hf_token)  # Save the token for authentication

    async def push_to_hub(self, dataset: Dataset, dataset_name: str) -> None:
        """Push the dataset to Hugging Face Hub."""
        try:
            logger.info(f"Creating Hugging Face Dataset: {dataset_name}...")
            dataset.push_to_hub(dataset_name)
            logger.info(f"Dataset pushed to Hugging Face Hub: {dataset_name}")
        except Exception as e:
            logger.error(f"Failed to push dataset to Hugging Face Hub: {e}")
            raise DatasetPushError(f"Failed to push dataset: {e}")

    async def read_dataset(self, dataset_name: str) -> Optional[Dataset]:
        """Read a dataset from Hugging Face Hub."""
        try:
            logger.info(f"Loading dataset from Hugging Face Hub: {dataset_name}...")
            dataset = load_dataset(
                dataset_name,
                keep_in_memory=True,
                download_mode="force_redownload",
            )
            return dataset["train"]
        except Exception as e:
            logger.error(f"Failed to read dataset: {e}")
            raise DatasetNotFoundError(f"Dataset not found: {e}")

    async def update_dataset(
        self,
        dataset_name: str,
        updates: Dict[str, List],
        target_column: str,
        output_column: str = "embeddings",
    ) -> Optional[Dataset]:
        """Update a dataset on Hugging Face Hub by generating embeddings for new data and concatenating it with the existing dataset."""
        try:
            # Step 1: Load the existing dataset from Hugging Face Hub
            logger.info(
                f"Loading existing dataset from Hugging Face Hub: {dataset_name}..."
            )
            existing_dataset = await self.read_dataset(dataset_name)

            # Step 2: Convert the new updates into a Dataset
            logger.info("Converting updates to Dataset...")
            new_dataset = Dataset.from_dict(updates)

            # Step 3: Generate embeddings for the new data
            logger.info("Generating embeddings for the new data...")
            embedding_service = EmbeddingService(
                openai_api_key=os.getenv("OPENAI_API_KEY")
            )  # Get the embedding service
            new_dataset = await embedding_service.create_embeddings(
                new_dataset, target_column, output_column
            )

            # Step 4: Concatenate the existing Dataset with the new Dataset
            logger.info("Concatenating existing dataset with new data...")
            updated_dataset = concatenate_datasets([existing_dataset, new_dataset])

            # Step 5: Push the updated dataset back to Hugging Face Hub
            logger.info(
                f"Pushing updated dataset to Hugging Face Hub: {dataset_name}..."
            )
            await self.push_to_hub(updated_dataset, dataset_name)

            return updated_dataset
        except Exception as e:
            logger.error(f"Failed to update dataset: {e}")
            raise DatasetPushError(f"Failed to update dataset: {e}")

    async def delete_dataset(self, dataset_name: str) -> None:
        """Delete a dataset from Hugging Face Hub."""
        try:
            logger.info(f"Deleting dataset from Hugging Face Hub: {dataset_name}...")
            self.hf_api.delete_repo(repo_id=dataset_name, repo_type="dataset")
            logger.info(f"Dataset deleted from Hugging Face Hub: {dataset_name}")
        except Exception as e:
            logger.error(f"Failed to delete dataset: {e}")
            raise DatasetDeleteError(f"Failed to delete dataset: {e}")


    async def delete_rows_from_dataset(self, dataset_name: str, key_column: str, keys_to_delete: List[str]):
        """
        Loads a dataset, filters out rows based on a list of keys in a specific column, and pushes it back.
        """
        if not keys_to_delete:
            return

        # Step 1: Load the existing dataset
        logger.info(f"Loading dataset {dataset_name} to delete rows.")
        dataset = await self.read_dataset(dataset_name)

        # Step 2 : Filter the dataset to EXCLUDE the rows with the given product_types
        logger.info(f"Filtering out rows where column {key_column} is in {keys_to_delete}")
        initial_row_count = len(dataset)

        filtered_dataset = dataset.filter(lambda element: element[key_column] not in keys_to_delete)

        final_row_count = len(filtered_dataset)
        logger.info(f"{initial_row_count - final_row_count} rows deleted.")

        # Step 3 : Push the modified dataset back to the hub
        await self.push_to_hub(filtered_dataset, dataset_name)

        return filtered_dataset