Similarity_Search / src /api /services /embedding_service.py
amaye15
Feat - Additional Columns Returned
b96eea7
from openai import AsyncOpenAI
import logging
from typing import List, Dict, Union, Optional
from datasets import Dataset
import asyncio
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
from src.api.exceptions import OpenAIError
# Set up structured logging
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger(__name__)
class EmbeddingService:
def __init__(
self,
openai_api_key: str,
model: str = "text-embedding-3-small",
batch_size: int = 10,
max_concurrent_requests: int = 10, # Limit to 10 concurrent requests
):
self.client = AsyncOpenAI(api_key=openai_api_key)
self.model = model
self.batch_size = batch_size
self.semaphore = asyncio.Semaphore(max_concurrent_requests) # Rate limiter
self.total_requests = 0 # Total number of requests to process
self.completed_requests = 0 # Number of completed requests
async def get_embedding(self, text: str) -> List[float]:
"""Generate embeddings for the given text using OpenAI."""
text = text.replace("\n", " ")
try:
async with self.semaphore: # Acquire a semaphore slot
response = await self.client.embeddings.create(
input=[text], model=self.model
)
self.completed_requests += 1 # Increment completed requests
self._log_progress() # Log progress
return response.data[0].embedding
except Exception as e:
logger.error(f"Failed to generate embedding: {e}")
raise OpenAIError(f"OpenAI API error: {e}")
async def create_embeddings(
self,
data: Union[Dataset, List[str]],
target_column: str = None,
output_column: str = "embeddings",
) -> Union[Dataset, List[List[float]]]:
"""
Create embeddings for either a Dataset or a list of strings.
Args:
data: Either a Dataset or a list of strings.
target_column: The column in the Dataset to generate embeddings for (required if data is a Dataset).
output_column: The column to store embeddings in the Dataset (default: "embeddings").
Returns:
If data is a Dataset, returns the Dataset with the embeddings column.
If data is a list of strings, returns a list of embeddings.
"""
if isinstance(data, Dataset):
if not target_column:
raise ValueError("target_column is required when data is a Dataset.")
return await self._create_embeddings_for_dataset(
data, target_column, output_column
)
elif isinstance(data, list):
return await self._create_embeddings_for_texts(data)
else:
raise TypeError(
"data must be either a Hugging Face Dataset or a list of strings."
)
async def _create_embeddings_for_dataset(
self, dataset: Dataset, target_column: str, output_column: str
) -> Dataset:
"""Create embeddings for the target column in the Dataset."""
logger.info("Generating embeddings for Dataset...")
self.total_requests = len(dataset) # Set total number of requests
self.completed_requests = 0 # Reset completed requests counter
embeddings = []
for i in range(0, len(dataset), self.batch_size):
batch = dataset[i : i + self.batch_size]
batch_embeddings = await asyncio.gather(
*[self.get_embedding(text) for text in batch[target_column]]
)
embeddings.extend(batch_embeddings)
dataset = dataset.add_column(output_column, embeddings)
return dataset
async def _create_embeddings_for_texts(self, texts: List[str]) -> List[List[float]]:
"""Create embeddings for a list of strings."""
logger.info("Generating embeddings for list of texts...")
self.total_requests = len(texts) # Set total number of requests
self.completed_requests = 0 # Reset completed requests counter
batches = [
texts[i : i + self.batch_size]
for i in range(0, len(texts), self.batch_size)
]
embeddings = []
for batch in batches:
batch_embeddings = await asyncio.gather(
*[self.get_embedding(text) for text in batch]
)
embeddings.extend(batch_embeddings)
return embeddings
def _log_progress(self):
"""Log the progress of embedding generation."""
progress = (self.completed_requests / self.total_requests) * 100
logger.info(
f"Progress: {self.completed_requests}/{self.total_requests} ({progress:.2f}%)"
)
# async def search_embeddings(
# self,
# query_embeddings: List[List[float]],
# dataset: Dataset,
# embedding_column: str,
# target_column: str,
# num_results: int,
# ) -> Dict[str, List]:
# """
# Perform a cosine similarity search between query embeddings and dataset embeddings.
# Args:
# query_embeddings: List of embeddings for the query texts.
# dataset: The dataset to search in.
# embedding_column: The column in the dataset containing embeddings.
# target_column: The column to return in the results.
# num_results: The number of results to return.
# Returns:
# A dictionary of lists containing the target column values and their similarity scores.
# """
# dataset_embeddings = np.array(dataset[embedding_column])
# query_embeddings = np.array(query_embeddings)
# # Compute cosine similarity
# similarities = cosine_similarity(query_embeddings, dataset_embeddings)
# # Initialize the results dictionary
# results = {
# target_column: [],
# "similarity": [],
# }
# # Get the top-k results for each query
# for query_similarities in similarities:
# top_k_indices = np.argsort(query_similarities)[-num_results:][::-1]
# for idx in top_k_indices:
# results[target_column].append(dataset[target_column][idx])
# results["similarity"].append(float(query_similarities[idx]))
# return results
async def search_embeddings(
self,
query_embeddings: List[List[float]],
dataset: Dataset,
embedding_column: str,
target_column: str,
num_results: int,
additional_columns: Optional[List[str]] = None,
) -> Dict[str, List]:
"""
Perform a cosine similarity search between query embeddings and dataset embeddings.
Args:
query_embeddings: List of embeddings for the query texts.
dataset: The dataset to search in.
embedding_column: The column in the dataset containing embeddings.
target_column: The column to return in the results.
num_results: The number of results to return.
additional_columns: List of additional columns to include in the results.
Returns:
A dictionary of lists containing the target column values, their similarity scores,
and any additional columns specified.
"""
dataset_embeddings = np.array(dataset[embedding_column])
query_embeddings = np.array(query_embeddings)
# Compute cosine similarity
similarities = cosine_similarity(query_embeddings, dataset_embeddings)
# Initialize the results dictionary
results = {
target_column: [],
"similarity": [],
}
# Add additional columns to the results dictionary
if additional_columns:
for column in additional_columns:
results[column] = []
# Get the top-k results for each query
for query_similarities in similarities:
top_k_indices = np.argsort(query_similarities)[-num_results:][::-1]
for idx in top_k_indices:
results[target_column].append(dataset[target_column][idx])
results["similarity"].append(float(query_similarities[idx]))
if additional_columns:
for column in additional_columns:
results[column].append(dataset[column][idx])
return results