Spaces:
Running
Running
from openai import AsyncOpenAI | |
import logging | |
from typing import List, Dict, Union, Optional | |
from datasets import Dataset | |
import asyncio | |
import numpy as np | |
from sklearn.metrics.pairwise import cosine_similarity | |
from src.api.exceptions import OpenAIError | |
# Set up structured logging | |
logging.basicConfig( | |
level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s" | |
) | |
logger = logging.getLogger(__name__) | |
class EmbeddingService: | |
def __init__( | |
self, | |
openai_api_key: str, | |
model: str = "text-embedding-3-small", | |
batch_size: int = 10, | |
max_concurrent_requests: int = 10, # Limit to 10 concurrent requests | |
): | |
self.client = AsyncOpenAI(api_key=openai_api_key) | |
self.model = model | |
self.batch_size = batch_size | |
self.semaphore = asyncio.Semaphore(max_concurrent_requests) # Rate limiter | |
self.total_requests = 0 # Total number of requests to process | |
self.completed_requests = 0 # Number of completed requests | |
async def get_embedding(self, text: str) -> List[float]: | |
"""Generate embeddings for the given text using OpenAI.""" | |
text = text.replace("\n", " ") | |
try: | |
async with self.semaphore: # Acquire a semaphore slot | |
response = await self.client.embeddings.create( | |
input=[text], model=self.model | |
) | |
self.completed_requests += 1 # Increment completed requests | |
self._log_progress() # Log progress | |
return response.data[0].embedding | |
except Exception as e: | |
logger.error(f"Failed to generate embedding: {e}") | |
raise OpenAIError(f"OpenAI API error: {e}") | |
async def create_embeddings( | |
self, | |
data: Union[Dataset, List[str]], | |
target_column: str = None, | |
output_column: str = "embeddings", | |
) -> Union[Dataset, List[List[float]]]: | |
""" | |
Create embeddings for either a Dataset or a list of strings. | |
Args: | |
data: Either a Dataset or a list of strings. | |
target_column: The column in the Dataset to generate embeddings for (required if data is a Dataset). | |
output_column: The column to store embeddings in the Dataset (default: "embeddings"). | |
Returns: | |
If data is a Dataset, returns the Dataset with the embeddings column. | |
If data is a list of strings, returns a list of embeddings. | |
""" | |
if isinstance(data, Dataset): | |
if not target_column: | |
raise ValueError("target_column is required when data is a Dataset.") | |
return await self._create_embeddings_for_dataset( | |
data, target_column, output_column | |
) | |
elif isinstance(data, list): | |
return await self._create_embeddings_for_texts(data) | |
else: | |
raise TypeError( | |
"data must be either a Hugging Face Dataset or a list of strings." | |
) | |
async def _create_embeddings_for_dataset( | |
self, dataset: Dataset, target_column: str, output_column: str | |
) -> Dataset: | |
"""Create embeddings for the target column in the Dataset.""" | |
logger.info("Generating embeddings for Dataset...") | |
self.total_requests = len(dataset) # Set total number of requests | |
self.completed_requests = 0 # Reset completed requests counter | |
embeddings = [] | |
for i in range(0, len(dataset), self.batch_size): | |
batch = dataset[i : i + self.batch_size] | |
batch_embeddings = await asyncio.gather( | |
*[self.get_embedding(text) for text in batch[target_column]] | |
) | |
embeddings.extend(batch_embeddings) | |
dataset = dataset.add_column(output_column, embeddings) | |
return dataset | |
async def _create_embeddings_for_texts(self, texts: List[str]) -> List[List[float]]: | |
"""Create embeddings for a list of strings.""" | |
logger.info("Generating embeddings for list of texts...") | |
self.total_requests = len(texts) # Set total number of requests | |
self.completed_requests = 0 # Reset completed requests counter | |
batches = [ | |
texts[i : i + self.batch_size] | |
for i in range(0, len(texts), self.batch_size) | |
] | |
embeddings = [] | |
for batch in batches: | |
batch_embeddings = await asyncio.gather( | |
*[self.get_embedding(text) for text in batch] | |
) | |
embeddings.extend(batch_embeddings) | |
return embeddings | |
def _log_progress(self): | |
"""Log the progress of embedding generation.""" | |
progress = (self.completed_requests / self.total_requests) * 100 | |
logger.info( | |
f"Progress: {self.completed_requests}/{self.total_requests} ({progress:.2f}%)" | |
) | |
# async def search_embeddings( | |
# self, | |
# query_embeddings: List[List[float]], | |
# dataset: Dataset, | |
# embedding_column: str, | |
# target_column: str, | |
# num_results: int, | |
# ) -> Dict[str, List]: | |
# """ | |
# Perform a cosine similarity search between query embeddings and dataset embeddings. | |
# Args: | |
# query_embeddings: List of embeddings for the query texts. | |
# dataset: The dataset to search in. | |
# embedding_column: The column in the dataset containing embeddings. | |
# target_column: The column to return in the results. | |
# num_results: The number of results to return. | |
# Returns: | |
# A dictionary of lists containing the target column values and their similarity scores. | |
# """ | |
# dataset_embeddings = np.array(dataset[embedding_column]) | |
# query_embeddings = np.array(query_embeddings) | |
# # Compute cosine similarity | |
# similarities = cosine_similarity(query_embeddings, dataset_embeddings) | |
# # Initialize the results dictionary | |
# results = { | |
# target_column: [], | |
# "similarity": [], | |
# } | |
# # Get the top-k results for each query | |
# for query_similarities in similarities: | |
# top_k_indices = np.argsort(query_similarities)[-num_results:][::-1] | |
# for idx in top_k_indices: | |
# results[target_column].append(dataset[target_column][idx]) | |
# results["similarity"].append(float(query_similarities[idx])) | |
# return results | |
async def search_embeddings( | |
self, | |
query_embeddings: List[List[float]], | |
dataset: Dataset, | |
embedding_column: str, | |
target_column: str, | |
num_results: int, | |
additional_columns: Optional[List[str]] = None, | |
) -> Dict[str, List]: | |
""" | |
Perform a cosine similarity search between query embeddings and dataset embeddings. | |
Args: | |
query_embeddings: List of embeddings for the query texts. | |
dataset: The dataset to search in. | |
embedding_column: The column in the dataset containing embeddings. | |
target_column: The column to return in the results. | |
num_results: The number of results to return. | |
additional_columns: List of additional columns to include in the results. | |
Returns: | |
A dictionary of lists containing the target column values, their similarity scores, | |
and any additional columns specified. | |
""" | |
dataset_embeddings = np.array(dataset[embedding_column]) | |
query_embeddings = np.array(query_embeddings) | |
# Compute cosine similarity | |
similarities = cosine_similarity(query_embeddings, dataset_embeddings) | |
# Initialize the results dictionary | |
results = { | |
target_column: [], | |
"similarity": [], | |
} | |
# Add additional columns to the results dictionary | |
if additional_columns: | |
for column in additional_columns: | |
results[column] = [] | |
# Get the top-k results for each query | |
for query_similarities in similarities: | |
top_k_indices = np.argsort(query_similarities)[-num_results:][::-1] | |
for idx in top_k_indices: | |
results[target_column].append(dataset[target_column][idx]) | |
results["similarity"].append(float(query_similarities[idx])) | |
if additional_columns: | |
for column in additional_columns: | |
results[column].append(dataset[column][idx]) | |
return results | |