File size: 8,585 Bytes
2cb9dec
 
b96eea7
0611c31
2cb9dec
cccaa2c
 
2cb9dec
 
 
 
 
 
 
 
 
 
 
 
 
 
bc82930
 
2cb9dec
 
 
 
bc82930
e0b1978
 
2cb9dec
 
 
 
 
bc82930
 
 
 
e0b1978
 
bc82930
2cb9dec
 
 
 
 
fdc226e
0611c31
fdc226e
 
0611c31
fdc226e
0611c31
fdc226e
 
0611c31
 
 
fdc226e
 
0611c31
fdc226e
 
0611c31
fdc226e
0611c31
 
fdc226e
 
 
 
 
 
0611c31
fdc226e
 
0611c31
 
 
 
 
 
e0b1978
 
0611c31
 
 
 
 
 
 
 
 
 
2cb9dec
fdc226e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0b1978
 
 
 
 
 
cccaa2c
b96eea7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cccaa2c
 
 
 
 
 
 
b96eea7
494872d
cccaa2c
 
 
 
 
 
 
 
 
b96eea7
cccaa2c
 
b96eea7
 
cccaa2c
 
 
 
 
 
 
494872d
 
 
 
 
 
b96eea7
 
 
 
 
cccaa2c
494872d
cccaa2c
494872d
 
 
b96eea7
 
 
cccaa2c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
from openai import AsyncOpenAI
import logging
from typing import List, Dict, Union, Optional
from datasets import Dataset
import asyncio
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
from src.api.exceptions import OpenAIError

# Set up structured logging
logging.basicConfig(
    level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger(__name__)


class EmbeddingService:
    def __init__(
        self,
        openai_api_key: str,
        model: str = "text-embedding-3-small",
        batch_size: int = 10,
        max_concurrent_requests: int = 10,  # Limit to 10 concurrent requests
    ):
        self.client = AsyncOpenAI(api_key=openai_api_key)
        self.model = model
        self.batch_size = batch_size
        self.semaphore = asyncio.Semaphore(max_concurrent_requests)  # Rate limiter
        self.total_requests = 0  # Total number of requests to process
        self.completed_requests = 0  # Number of completed requests

    async def get_embedding(self, text: str) -> List[float]:
        """Generate embeddings for the given text using OpenAI."""
        text = text.replace("\n", " ")
        try:
            async with self.semaphore:  # Acquire a semaphore slot
                response = await self.client.embeddings.create(
                    input=[text], model=self.model
                )
                self.completed_requests += 1  # Increment completed requests
                self._log_progress()  # Log progress
                return response.data[0].embedding
        except Exception as e:
            logger.error(f"Failed to generate embedding: {e}")
            raise OpenAIError(f"OpenAI API error: {e}")

    async def create_embeddings(
        self,
        data: Union[Dataset, List[str]],
        target_column: str = None,
        output_column: str = "embeddings",
    ) -> Union[Dataset, List[List[float]]]:
        """
        Create embeddings for either a Dataset or a list of strings.

        Args:
            data: Either a Dataset or a list of strings.
            target_column: The column in the Dataset to generate embeddings for (required if data is a Dataset).
            output_column: The column to store embeddings in the Dataset (default: "embeddings").

        Returns:
            If data is a Dataset, returns the Dataset with the embeddings column.
            If data is a list of strings, returns a list of embeddings.
        """
        if isinstance(data, Dataset):
            if not target_column:
                raise ValueError("target_column is required when data is a Dataset.")
            return await self._create_embeddings_for_dataset(
                data, target_column, output_column
            )
        elif isinstance(data, list):
            return await self._create_embeddings_for_texts(data)
        else:
            raise TypeError(
                "data must be either a Hugging Face Dataset or a list of strings."
            )

    async def _create_embeddings_for_dataset(
        self, dataset: Dataset, target_column: str, output_column: str
    ) -> Dataset:
        """Create embeddings for the target column in the Dataset."""
        logger.info("Generating embeddings for Dataset...")
        self.total_requests = len(dataset)  # Set total number of requests
        self.completed_requests = 0  # Reset completed requests counter

        embeddings = []
        for i in range(0, len(dataset), self.batch_size):
            batch = dataset[i : i + self.batch_size]
            batch_embeddings = await asyncio.gather(
                *[self.get_embedding(text) for text in batch[target_column]]
            )
            embeddings.extend(batch_embeddings)

        dataset = dataset.add_column(output_column, embeddings)
        return dataset

    async def _create_embeddings_for_texts(self, texts: List[str]) -> List[List[float]]:
        """Create embeddings for a list of strings."""
        logger.info("Generating embeddings for list of texts...")
        self.total_requests = len(texts)  # Set total number of requests
        self.completed_requests = 0  # Reset completed requests counter

        batches = [
            texts[i : i + self.batch_size]
            for i in range(0, len(texts), self.batch_size)
        ]
        embeddings = []
        for batch in batches:
            batch_embeddings = await asyncio.gather(
                *[self.get_embedding(text) for text in batch]
            )
            embeddings.extend(batch_embeddings)
        return embeddings

    def _log_progress(self):
        """Log the progress of embedding generation."""
        progress = (self.completed_requests / self.total_requests) * 100
        logger.info(
            f"Progress: {self.completed_requests}/{self.total_requests} ({progress:.2f}%)"
        )

    # async def search_embeddings(
    #     self,
    #     query_embeddings: List[List[float]],
    #     dataset: Dataset,
    #     embedding_column: str,
    #     target_column: str,
    #     num_results: int,
    # ) -> Dict[str, List]:
    #     """
    #     Perform a cosine similarity search between query embeddings and dataset embeddings.

    #     Args:
    #         query_embeddings: List of embeddings for the query texts.
    #         dataset: The dataset to search in.
    #         embedding_column: The column in the dataset containing embeddings.
    #         target_column: The column to return in the results.
    #         num_results: The number of results to return.

    #     Returns:
    #         A dictionary of lists containing the target column values and their similarity scores.
    #     """
    #     dataset_embeddings = np.array(dataset[embedding_column])
    #     query_embeddings = np.array(query_embeddings)

    #     # Compute cosine similarity
    #     similarities = cosine_similarity(query_embeddings, dataset_embeddings)

    #     # Initialize the results dictionary
    #     results = {
    #         target_column: [],
    #         "similarity": [],
    #     }

    #     # Get the top-k results for each query
    #     for query_similarities in similarities:
    #         top_k_indices = np.argsort(query_similarities)[-num_results:][::-1]
    #         for idx in top_k_indices:
    #             results[target_column].append(dataset[target_column][idx])
    #             results["similarity"].append(float(query_similarities[idx]))

    #     return results

    async def search_embeddings(
        self,
        query_embeddings: List[List[float]],
        dataset: Dataset,
        embedding_column: str,
        target_column: str,
        num_results: int,
        additional_columns: Optional[List[str]] = None,
    ) -> Dict[str, List]:
        """
        Perform a cosine similarity search between query embeddings and dataset embeddings.

        Args:
            query_embeddings: List of embeddings for the query texts.
            dataset: The dataset to search in.
            embedding_column: The column in the dataset containing embeddings.
            target_column: The column to return in the results.
            num_results: The number of results to return.
            additional_columns: List of additional columns to include in the results.

        Returns:
            A dictionary of lists containing the target column values, their similarity scores,
            and any additional columns specified.
        """
        dataset_embeddings = np.array(dataset[embedding_column])
        query_embeddings = np.array(query_embeddings)

        # Compute cosine similarity
        similarities = cosine_similarity(query_embeddings, dataset_embeddings)

        # Initialize the results dictionary
        results = {
            target_column: [],
            "similarity": [],
        }

        # Add additional columns to the results dictionary
        if additional_columns:
            for column in additional_columns:
                results[column] = []

        # Get the top-k results for each query
        for query_similarities in similarities:
            top_k_indices = np.argsort(query_similarities)[-num_results:][::-1]
            for idx in top_k_indices:
                results[target_column].append(dataset[target_column][idx])
                results["similarity"].append(float(query_similarities[idx]))
                if additional_columns:
                    for column in additional_columns:
                        results[column].append(dataset[column][idx])

        return results