Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
import random | |
from diffusers import StableDiffusionXLPipeline | |
from diffusers import EulerDiscreteScheduler | |
device = "cpu" | |
dtype = torch.float32 | |
if torch.cuda.is_available(): | |
device = "cuda" | |
dtype = torch.float16 | |
# check if MPS is available OSX only M1/M2/M3 chips | |
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available() | |
if mps_available: | |
device = "mps" | |
dtype = torch.float16 | |
#print(f"device: {device}, dtype: {dtype}") | |
pipeline = StableDiffusionXLPipeline.from_pretrained("recoilme/ColorfulXL-Lightning", | |
variant="fp16", | |
torch_dtype=dtype, | |
use_safetensors=True) | |
pipeline.to(device) | |
pipeline.scheduler = EulerDiscreteScheduler.from_config(pipeline.scheduler.config, timestep_spacing="trailing") | |
# Comes from | |
# https://wandb.ai/nasirk24/UNET-FreeU-SDXL/reports/FreeU-SDXL-Optimal-Parameters--Vmlldzo1NDg4NTUw | |
if device == "cuda": | |
pipeline.enable_freeu(s1=0.6, s2=0.4, b1=1.1, b2=1.2) | |
def generate(prompt, width, height, sample_steps, seed): | |
generator = torch.Generator(device=device).manual_seed(int(seed)) | |
return pipeline(prompt=prompt, prompt_2=prompt, guidance_scale=0, generator=generator, negative_prompt=None, negative_prompt_2=None, width=width, height=height, num_inference_steps=sample_steps).images[0] | |
def random_seed(): | |
return random.randint(0, 2**32 - 1) | |
with gr.Blocks() as interface: | |
with gr.Column(): | |
with gr.Row(): | |
with gr.Column(): | |
prompt = gr.Textbox(label="Prompt", info="What do you want?", value="girl sitting on a small hill looking at night sky, back view, distant exploding moon", lines=4, interactive=True) | |
with gr.Column(): | |
generate_button = gr.Button("Generate") | |
with gr.Accordion(label="Advanced Settings", open=False): | |
with gr.Row(): | |
with gr.Column(): | |
width = gr.Slider(label="Width", info="The width in pixels of the generated image.", value=576, minimum=512, maximum=1280, step=64, interactive=True) | |
height = gr.Slider(label="Height", info="The height in pixels of the generated image.", value=832, minimum=512, maximum=1280, step=64, interactive=True) | |
with gr.Row(): | |
seed = gr.Number(label="Seed", | |
value=None, | |
scale=8, | |
info="Random seed for reproducibility.") | |
seed_button = gr.Button("π²", scale=2, elem_id="seed_button") | |
seed_button.click(fn=random_seed, inputs=[], outputs=seed) | |
with gr.Column(): | |
sampling_steps = gr.Slider(label="Sampling Steps", info="The number of denoising steps.", value=5, minimum=3, maximum=10, step=1, interactive=True) | |
with gr.Row(): | |
output = gr.Image() | |
generate_button.click(fn=generate, inputs=[prompt, width, height, sampling_steps, seed], outputs=[output]) | |
if __name__ == "__main__": | |
interface.launch() |