File size: 4,742 Bytes
4602937
fada25c
4615482
4602937
fada25c
 
4602937
162343b
dd1c2fe
 
 
 
 
 
 
2b44908
fada25c
c1c397a
fada25c
 
c545b48
 
fada25c
 
 
 
 
 
 
 
3430157
fada25c
 
 
 
2b44908
fada25c
 
 
2b44908
 
c1c397a
 
fada25c
 
 
 
 
 
 
6dd9499
fada25c
 
 
6dd9499
d9ece28
2725fa3
6dd9499
 
 
fada25c
 
 
 
 
 
 
 
6dd9499
 
 
 
 
 
 
 
fada25c
 
2b44908
fada25c
2b44908
fada25c
2b44908
fada25c
6dd9499
 
fada25c
2b44908
 
 
fada25c
 
 
6dd9499
7adc402
 
 
86b945b
7adc402
 
 
 
 
162343b
 
 
 
 
 
 
 
 
 
 
 
7adc402
0a5200d
7adc402
7f3fc7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
455007f
 
 
 
6570683
7b0ee51
 
0a5200d
392cef8
162343b
f2f41f0
f0d1876
e0b0a27
c1c397a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
from dotenv import load_dotenv
import gradio as gr
import os
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from sentence_transformers import SentenceTransformer
import datetime
import random

def select_random_name():
    names = ['Clara', 'Lily']
    return random.choice(names)

# Example usage
# Load environment variables
load_dotenv()

# Configure the Llama index settings
Settings.llm = HuggingFaceInferenceAPI(
    model_name="meta-llama/Meta-Llama-3-8B-Instruct",
    tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct",
    context_window=3000,
    token=os.getenv("HF_TOKEN"),
    max_new_tokens=512,
    generate_kwargs={"temperature": 0.1},
)
Settings.embed_model = HuggingFaceEmbedding(
    model_name="BAAI/bge-small-en-v1.5"
)

# Define the directory for persistent storage and data
PERSIST_DIR = "db"
PDF_DIRECTORY = 'data'  # Changed to the directory containing PDFs

# Ensure directories exist
os.makedirs(PDF_DIRECTORY, exist_ok=True)
os.makedirs(PERSIST_DIR, exist_ok=True)

# Variable to store current chat conversation
current_chat_history = []
kkk = select_random_name()

def data_ingestion_from_directory():
    # Use SimpleDirectoryReader on the directory containing the PDF files
    documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()
    storage_context = StorageContext.from_defaults()
    index = VectorStoreIndex.from_documents(documents)
    index.storage_context.persist(persist_dir=PERSIST_DIR)

def handle_query(query):
    chat_text_qa_msgs = [
        (
            "user",
            """
           You are the Lily Redfernstech chatbot. Your goal is to provide accurate, professional, and helpful answers to user queries based on the company's data. Always ensure your responses are clear and concise. give response within 10-15 words only       
           {context_str}
            Question:
            {query_str}
            """
        )
    ]
    text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)

    # Load index from storage
    storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
    index = load_index_from_storage(storage_context)

    # Use chat history to enhance response
    context_str = ""
    for past_query, response in reversed(current_chat_history):
        if past_query.strip():
            context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n"

    query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str)
    answer = query_engine.query(query)

    if hasattr(answer, 'response'):
        response = answer.response
    elif isinstance(answer, dict) and 'response' in answer:
        response = answer['response']
    else:
        response = "Sorry, I couldn't find an answer."

    # Update current chat history
    current_chat_history.append((query, response))

    return response

# Example usage: Process PDF ingestion from directory
print("Processing PDF ingestion from directory:", PDF_DIRECTORY)
data_ingestion_from_directory()

# Define the function to handle predictions
def predict(message, history):
    logo_html = '''
    <div class="circle-logo">
      <img src="https://rb.gy/8r06eg" alt="FernAi">
    </div>
    '''
    response = handle_query(message)
    response_with_logo = f'<div class="response-with-logo">{logo_html}<div class="response-text">{response}</div></div>'
    return response_with_logo

# Define your Gradio chat interface function (replace with your actual logic)
def chat_interface(message, history):
    try:
        # Process the user message and generate a response (your chatbot logic)
        response = handle_query(message)

        # Return the bot response
        return response
    except Exception as e:
        return str(e)

# Custom CSS for styling
css = '''
  .circle-logo {
  display: inline-block;
  width: 40px;
  height: 40px;
  border-radius: 50%;
  overflow: hidden;
  margin-right: 10px;
  vertical-align: middle;
}
.circle-logo img {
  width: 100%;
  height: 100%;
  object-fit: cover;
}
.response-with-logo {
  display: flex;
  align-items: center;
  margin-bottom: 10px;
}
footer {
    display: none !important;
    background-color: #F8D7DA;
  }
label.svelte-1b6s6s {display: none}
div.svelte-rk35yg {display: none;}
div.progress-text.svelte-z7cif2.meta-text {display: none;}
'''

gr.ChatInterface(chat_interface,
                 css=css,
                 description="Lily",
                 clear_btn=None, undo_btn=None, retry_btn=None,
                 ).launch()