File size: 4,680 Bytes
fada25c
4615482
2f95558
5751d9f
4602937
dd1c2fe
5751d9f
dd1c2fe
2b44908
fada25c
c1c397a
fada25c
 
c545b48
 
fada25c
 
 
 
 
 
 
 
3430157
fada25c
 
5751d9f
fada25c
2b44908
fada25c
 
 
2f95558
 
23b9040
 
2f95558
 
 
 
 
 
 
 
 
 
23b9040
fada25c
 
 
6dd9499
e40503c
2725fa3
6dd9499
 
 
fada25c
 
 
 
 
 
 
 
6dd9499
 
23b9040
 
 
 
 
 
6dd9499
 
 
fada25c
 
2b44908
fada25c
2b44908
fada25c
2b44908
fada25c
f941775
 
2f95558
fada25c
2b44908
 
c406e1d
 
 
 
 
 
 
 
 
 
 
 
4eb2710
23b9040
 
162343b
5751d9f
2f95558
162343b
 
 
 
 
 
7adc402
0a5200d
7adc402
7f3fc7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
455007f
 
 
 
6570683
7b0ee51
110c6a2
7b0ee51
0a5200d
392cef8
c406e1d
 
 
 
4eb2710
f941775
c406e1d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import gradio as gr
import os
from http.cookies import SimpleCookie
from dotenv import load_dotenv
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings
import random
import datetime

# Load environment variables
load_dotenv()

# Configure the Llama index settings
Settings.llm = HuggingFaceInferenceAPI(
    model_name="meta-llama/Meta-Llama-3-8B-Instruct",
    tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct",
    context_window=3000,
    token=os.getenv("HF_TOKEN"),
    max_new_tokens=512,
    generate_kwargs={"temperature": 0.1},
)
Settings.embed_model = HuggingFaceEmbedding(
    model_name="BAAI/bge-small-en-v1.5"
)

# Define the directory for persistent storage and data
PERSIST_DIR = "db"
PDF_DIRECTORY = 'data'

# Ensure directories exist
os.makedirs(PDF_DIRECTORY, exist_ok=True)
os.makedirs(PERSIST_DIR, exist_ok=True)

# Function to save chat history to cookies
def save_chat_history_to_cookies(chat_id, query, response, cookies):
    if cookies is None:
        cookies = {}
    history = cookies.get('chat_history', '[]')
    history_list = eval(history)
    history_list.append({
        "chat_id": chat_id,
        "query": query,
        "response": response,
        "timestamp": str(datetime.datetime.now())
    })
    cookies['chat_history'] = str(history_list)

def handle_query(query, cookies=None):
    chat_text_qa_msgs = [
        (
            "user",
            """
           You are the Lily Redfernstech chatbot. Your goal is to provide accurate, professional, and helpful answers to user queries based on the company's data. Always ensure your responses are clear and concise. Give response within 10-15 words only       
           {context_str}
            Question:
            {query_str}
            """
        )
    ]
    text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)

    # Load index from storage
    storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
    index = load_index_from_storage(storage_context)

    # Use chat history to enhance response
    context_str = ""
    if cookies:
        history = cookies.get('chat_history', '[]')
        history_list = eval(history)
        for entry in reversed(history_list):
            if entry["query"].strip():
                context_str += f"User asked: '{entry['query']}'\nBot answered: '{entry['response']}'\n"

    query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str)
    answer = query_engine.query(query)

    if hasattr(answer, 'response'):
        response = answer.response
    elif isinstance(answer, dict) and 'response' in answer:
        response = answer['response']
    else:
        response = "Sorry, I couldn't find an answer."

    # Update current chat history dictionary (use unique ID as key)
    chat_id = str(datetime.datetime.now().timestamp())
    save_chat_history_to_cookies(chat_id, query, response, cookies)

    return response

# Function to detect iframe and block chat history access
def detect_iframe():
    iframe_script = '''
        <script>
            if (window != window.top) {
                alert("Chat history access is disabled in iframes.");
                document.getElementById('chat_history').style.display = 'none';
            }
        </script>
    '''
    return iframe_script

# Define your Gradio chat interface function
def chat_interface(message, history):
    cookies = {}  # You might need to get cookies from the request in a real implementation
    try:
        # Process the user message and generate a response
        response = handle_query(message, cookies)

        # Return the bot response
        return response
    except Exception as e:
        return str(e)

# Custom CSS for styling
css = '''
  .circle-logo {
  display: inline-block;
  width: 40px;
  height: 40px;
  border-radius: 50%;
  overflow: hidden;
  margin-right: 10px;
  vertical-align: middle;
}
.circle-logo img {
  width: 100%;
  height: 100%;
  object-fit: cover;
}
.response-with-logo {
  display: flex;
  align-items: center;
  margin-bottom: 10px;
}
footer {
    display: none !important;
    background-color: #F8D7DA;
  }
label.svelte-1b6s6s {display: none}
div.svelte-rk35yg {display: none;}
div.svelte-1rjryqp{display: none;}
div.progress-text.svelte-z7cif2.meta-text {display: none;}
'''

# Use Gradio Blocks to wrap components and add iframe detection
with gr.Blocks() as demo:
    gr.HTML(detect_iframe())
    chat = gr.ChatInterface(chat_interface, css=css, clear_btn=None, undo_btn=None, retry_btn=None)

# Launch the Gradio interface
demo.launch()