Spaces:
Runtime error
Runtime error
File size: 4,680 Bytes
fada25c 4615482 2f95558 5751d9f 4602937 dd1c2fe 5751d9f dd1c2fe 2b44908 fada25c c1c397a fada25c c545b48 fada25c 3430157 fada25c 5751d9f fada25c 2b44908 fada25c 2f95558 23b9040 2f95558 23b9040 fada25c 6dd9499 e40503c 2725fa3 6dd9499 fada25c 6dd9499 23b9040 6dd9499 fada25c 2b44908 fada25c 2b44908 fada25c 2b44908 fada25c f941775 2f95558 fada25c 2b44908 c406e1d 4eb2710 23b9040 162343b 5751d9f 2f95558 162343b 7adc402 0a5200d 7adc402 7f3fc7b 455007f 6570683 7b0ee51 110c6a2 7b0ee51 0a5200d 392cef8 c406e1d 4eb2710 f941775 c406e1d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
import gradio as gr
import os
from http.cookies import SimpleCookie
from dotenv import load_dotenv
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings
import random
import datetime
# Load environment variables
load_dotenv()
# Configure the Llama index settings
Settings.llm = HuggingFaceInferenceAPI(
model_name="meta-llama/Meta-Llama-3-8B-Instruct",
tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct",
context_window=3000,
token=os.getenv("HF_TOKEN"),
max_new_tokens=512,
generate_kwargs={"temperature": 0.1},
)
Settings.embed_model = HuggingFaceEmbedding(
model_name="BAAI/bge-small-en-v1.5"
)
# Define the directory for persistent storage and data
PERSIST_DIR = "db"
PDF_DIRECTORY = 'data'
# Ensure directories exist
os.makedirs(PDF_DIRECTORY, exist_ok=True)
os.makedirs(PERSIST_DIR, exist_ok=True)
# Function to save chat history to cookies
def save_chat_history_to_cookies(chat_id, query, response, cookies):
if cookies is None:
cookies = {}
history = cookies.get('chat_history', '[]')
history_list = eval(history)
history_list.append({
"chat_id": chat_id,
"query": query,
"response": response,
"timestamp": str(datetime.datetime.now())
})
cookies['chat_history'] = str(history_list)
def handle_query(query, cookies=None):
chat_text_qa_msgs = [
(
"user",
"""
You are the Lily Redfernstech chatbot. Your goal is to provide accurate, professional, and helpful answers to user queries based on the company's data. Always ensure your responses are clear and concise. Give response within 10-15 words only
{context_str}
Question:
{query_str}
"""
)
]
text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
# Load index from storage
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
index = load_index_from_storage(storage_context)
# Use chat history to enhance response
context_str = ""
if cookies:
history = cookies.get('chat_history', '[]')
history_list = eval(history)
for entry in reversed(history_list):
if entry["query"].strip():
context_str += f"User asked: '{entry['query']}'\nBot answered: '{entry['response']}'\n"
query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str)
answer = query_engine.query(query)
if hasattr(answer, 'response'):
response = answer.response
elif isinstance(answer, dict) and 'response' in answer:
response = answer['response']
else:
response = "Sorry, I couldn't find an answer."
# Update current chat history dictionary (use unique ID as key)
chat_id = str(datetime.datetime.now().timestamp())
save_chat_history_to_cookies(chat_id, query, response, cookies)
return response
# Function to detect iframe and block chat history access
def detect_iframe():
iframe_script = '''
<script>
if (window != window.top) {
alert("Chat history access is disabled in iframes.");
document.getElementById('chat_history').style.display = 'none';
}
</script>
'''
return iframe_script
# Define your Gradio chat interface function
def chat_interface(message, history):
cookies = {} # You might need to get cookies from the request in a real implementation
try:
# Process the user message and generate a response
response = handle_query(message, cookies)
# Return the bot response
return response
except Exception as e:
return str(e)
# Custom CSS for styling
css = '''
.circle-logo {
display: inline-block;
width: 40px;
height: 40px;
border-radius: 50%;
overflow: hidden;
margin-right: 10px;
vertical-align: middle;
}
.circle-logo img {
width: 100%;
height: 100%;
object-fit: cover;
}
.response-with-logo {
display: flex;
align-items: center;
margin-bottom: 10px;
}
footer {
display: none !important;
background-color: #F8D7DA;
}
label.svelte-1b6s6s {display: none}
div.svelte-rk35yg {display: none;}
div.svelte-1rjryqp{display: none;}
div.progress-text.svelte-z7cif2.meta-text {display: none;}
'''
# Use Gradio Blocks to wrap components and add iframe detection
with gr.Blocks() as demo:
gr.HTML(detect_iframe())
chat = gr.ChatInterface(chat_interface, css=css, clear_btn=None, undo_btn=None, retry_btn=None)
# Launch the Gradio interface
demo.launch()
|