Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os | |
from http.cookies import SimpleCookie | |
from dotenv import load_dotenv | |
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings | |
import random | |
import datetime | |
# Load environment variables | |
load_dotenv() | |
# Configure the Llama index settings | |
Settings.llm = HuggingFaceInferenceAPI( | |
model_name="meta-llama/Meta-Llama-3-8B-Instruct", | |
tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct", | |
context_window=3000, | |
token=os.getenv("HF_TOKEN"), | |
max_new_tokens=512, | |
generate_kwargs={"temperature": 0.1}, | |
) | |
Settings.embed_model = HuggingFaceEmbedding( | |
model_name="BAAI/bge-small-en-v1.5" | |
) | |
# Define the directory for persistent storage and data | |
PERSIST_DIR = "db" | |
PDF_DIRECTORY = 'data' | |
# Ensure directories exist | |
os.makedirs(PDF_DIRECTORY, exist_ok=True) | |
os.makedirs(PERSIST_DIR, exist_ok=True) | |
# Function to save chat history to cookies | |
def save_chat_history_to_cookies(chat_id, query, response, cookies): | |
if cookies is None: | |
cookies = {} | |
history = cookies.get('chat_history', '[]') | |
history_list = eval(history) | |
history_list.append({ | |
"chat_id": chat_id, | |
"query": query, | |
"response": response, | |
"timestamp": str(datetime.datetime.now()) | |
}) | |
cookies['chat_history'] = str(history_list) | |
def handle_query(query, cookies=None): | |
chat_text_qa_msgs = [ | |
( | |
"user", | |
""" | |
You are the Lily Redfernstech chatbot. Your goal is to provide accurate, professional, and helpful answers to user queries based on the company's data. Always ensure your responses are clear and concise. Give response within 10-15 words only | |
{context_str} | |
Question: | |
{query_str} | |
""" | |
) | |
] | |
text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs) | |
# Load index from storage | |
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR) | |
index = load_index_from_storage(storage_context) | |
# Use chat history to enhance response | |
context_str = "" | |
if cookies: | |
history = cookies.get('chat_history', '[]') | |
history_list = eval(history) | |
for entry in reversed(history_list): | |
if entry["query"].strip(): | |
context_str += f"User asked: '{entry['query']}'\nBot answered: '{entry['response']}'\n" | |
query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str) | |
answer = query_engine.query(query) | |
if hasattr(answer, 'response'): | |
response = answer.response | |
elif isinstance(answer, dict) and 'response' in answer: | |
response = answer['response'] | |
else: | |
response = "Sorry, I couldn't find an answer." | |
# Update current chat history dictionary (use unique ID as key) | |
chat_id = str(datetime.datetime.now().timestamp()) | |
save_chat_history_to_cookies(chat_id, query, response, cookies) | |
return response | |
# Function to detect iframe and block chat history access | |
def detect_iframe(): | |
iframe_script = ''' | |
<script> | |
if (window != window.top) { | |
alert("Chat history access is disabled in iframes."); | |
document.getElementById('chat_history').style.display = 'none'; | |
} | |
</script> | |
''' | |
return iframe_script | |
# Define your Gradio chat interface function | |
def chat_interface(message, history): | |
cookies = {} # You might need to get cookies from the request in a real implementation | |
try: | |
# Process the user message and generate a response | |
response = handle_query(message, cookies) | |
# Return the bot response | |
return response | |
except Exception as e: | |
return str(e) | |
# Custom CSS for styling | |
css = ''' | |
.circle-logo { | |
display: inline-block; | |
width: 40px; | |
height: 40px; | |
border-radius: 50%; | |
overflow: hidden; | |
margin-right: 10px; | |
vertical-align: middle; | |
} | |
.circle-logo img { | |
width: 100%; | |
height: 100%; | |
object-fit: cover; | |
} | |
.response-with-logo { | |
display: flex; | |
align-items: center; | |
margin-bottom: 10px; | |
} | |
footer { | |
display: none !important; | |
background-color: #F8D7DA; | |
} | |
label.svelte-1b6s6s {display: none} | |
div.svelte-rk35yg {display: none;} | |
div.svelte-1rjryqp{display: none;} | |
div.progress-text.svelte-z7cif2.meta-text {display: none;} | |
''' | |
# Use Gradio Blocks to wrap components and add iframe detection | |
with gr.Blocks() as demo: | |
gr.HTML(detect_iframe()) | |
chat = gr.ChatInterface(chat_interface, css=css, clear_btn=None, undo_btn=None, retry_btn=None) | |
# Launch the Gradio interface | |
demo.launch() | |