Spaces:
Runtime error
Runtime error
File size: 5,389 Bytes
1e17b27 fada25c 4615482 4602937 fada25c dd1c2fe 6097399 dd1c2fe 2b44908 fada25c 6097399 1ee7960 fada25c e0e431e fada25c 3430157 1ee7960 fada25c 6097399 fada25c 2b44908 fada25c 2b44908 fada25c 1ee7960 fada25c 6dd9499 fada25c 6dd9499 6097399 5ccaa0b 6dd9499 fada25c 6dd9499 fada25c 2b44908 fada25c 2b44908 fada25c 2b44908 fada25c 6dd9499 fada25c 2b44908 1ee7960 4200d19 7adc402 86b945b 7adc402 6097399 4200d19 6097399 7adc402 162343b 1ee7960 4200d19 162343b 6097399 4200d19 162343b 1ee7960 162343b 1ee7960 162343b 7adc402 0a5200d 7adc402 1ee7960 455007f cfa8dff 1ee7960 a86ed88 0a5200d 6097399 2405bb9 1ee7960 2405bb9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
from dotenv import load_dotenv
import gradio as gr
import os
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
import random
import uuid
import datetime
from gradio_client import Client
# Initialize Gradio Client
client = Client("srinukethanaboina/SRUNU")
def select_random_name():
names = ['Clara', 'Lily']
return random.choice(names)
# Load environment variables
load_dotenv()
# Configure the Llama index settings
Settings.llm = HuggingFaceInferenceAPI(
model_name="meta-llama/Meta-Llama-3-8B-Instruct",
tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct",
context_window=3000,
token=os.getenv("HF_TOKEN"),
max_new_tokens=512,
generate_kwargs={"temperature": 0.1},
)
Settings.embed_model = HuggingFaceEmbedding(
model_name="BAAI/bge-small-en-v1.5"
)
# Define the directory for persistent storage and data
PERSIST_DIR = "db"
PDF_DIRECTORY = 'data' # Directory containing PDFs
# Ensure directories exist
os.makedirs(PDF_DIRECTORY, exist_ok=True)
os.makedirs(PERSIST_DIR, exist_ok=True)
# Variable to store current chat conversation
current_chat_history = []
def data_ingestion_from_directory():
# Use SimpleDirectoryReader on the directory containing the PDF files
documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()
storage_context = StorageContext.from_defaults()
index = VectorStoreIndex.from_documents(documents)
index.storage_context.persist(persist_dir=PERSIST_DIR)
def handle_query(query):
chat_text_qa_msgs = [
(
"user",
"""
You are the Clara Redfernstech chatbot. Your goal is to provide accurate, professional, and helpful answers to user queries based on the company's data. Always ensure your responses are clear and concise. give response within 10-15 words only
{context_str}
Question:
{query_str}
"""
)
]
text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
# Load index from storage
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
index = load_index_from_storage(storage_context)
# Use chat history to enhance response
context_str = ""
for past_query, response in reversed(current_chat_history):
if past_query.strip():
context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n"
query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str)
answer = query_engine.query(query)
if hasattr(answer, 'response'):
response = answer.response
elif isinstance(answer, dict) and 'response' in answer:
response = answer['response']
else:
response = "Sorry, I couldn't find an answer."
# Update current chat history
current_chat_history.append((query, response))
return response
# Example usage: Process PDF ingestion from directory
print("Processing PDF ingestion from directory:", PDF_DIRECTORY)
data_ingestion_from_directory()
def predict(message, req):
logo_html = '''
<div class="circle-logo">
<img src="https://rb.gy/8r06eg" alt="FernAi">
</div>
'''
# Use the gradio_client API to process the chat history and IP address
response = client.predict(
ip_address=req.client.host, # Extract IP address from request
chat_history=message,
api_name="/predict"
)
response_with_logo = f'<div class="response-with-logo">{logo_html}<div class="response-text">{response}</div></div>'
return response_with_logo
# Define your Gradio chat interface function (replace with your actual logic)
def chat_interface(message, history, request: gr.Request):
try:
# Process the user message and generate a response
response = predict(message, request)
# Capture the message data
message_data = {
"sender": "user",
"message": message,
"response": response,
"timestamp": datetime.datetime.now().isoformat() # Use a library like datetime
}
# Return the bot response
return response
except Exception as e:
return str(e)
# Custom CSS for styling
css = '''
.circle-logo {
display: inline-block;
width: 40px;
height: 40px;
border-radius: 50%;
overflow: hidden;
margin-right: 10px;
vertical-align: middle;
}
.circle-logo img {
width: 100%;
height: 100%;
object-fit: cover;
}
.response-with-logo {
display: flex;
align-items: center;
margin-bottom: 10px;
}
footer {
display: none !important;
background-color: #F8D7DA;
}
.svelte-1ed2p3z p {
font-size: 24px;
font-weight: bold;
line-height: 1.2;
color: #111;
margin: 20px 0;
}
label.svelte-1b6s6s {display: none}
div.svelte-rk35yg {display: none;}
div.progress-text.svelte-z7cif2.meta-text {display: none;}
'''
# Launch the Gradio interface
# Launch the Gradio interface with verbose error reporting
gr.ChatInterface(chat_interface,
css=css,
description="Clara",
clear_btn=None, undo_btn=None, retry_btn=None,
).launch(show_error=True)
|