File size: 5,314 Bytes
1e17b27
fada25c
4615482
4602937
fada25c
 
dd1c2fe
6097399
 
 
 
 
 
dd1c2fe
 
 
 
 
2b44908
fada25c
6097399
1ee7960
fada25c
e0e431e
 
fada25c
 
 
 
 
 
 
 
3430157
1ee7960
fada25c
6097399
fada25c
2b44908
fada25c
 
 
2b44908
 
 
fada25c
1ee7960
fada25c
 
 
 
 
6dd9499
fada25c
 
 
6dd9499
6097399
5ccaa0b
6dd9499
 
 
fada25c
 
 
 
 
 
 
 
6dd9499
 
 
 
 
 
 
 
fada25c
 
2b44908
fada25c
2b44908
fada25c
2b44908
fada25c
6dd9499
 
fada25c
2b44908
 
1ee7960
 
 
 
4200d19
7adc402
 
86b945b
7adc402
 
6097399
 
4200d19
6097399
 
 
7adc402
 
162343b
1ee7960
4200d19
162343b
6097399
4200d19
162343b
 
 
 
 
 
1ee7960
162343b
 
1ee7960
162343b
 
 
 
7adc402
0a5200d
7adc402
1ee7960
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
455007f
 
 
cfa8dff
 
 
 
 
 
 
1ee7960
a86ed88
 
0a5200d
6097399
 
1ee7960
 
 
 
6097399
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
from dotenv import load_dotenv
import gradio as gr
import os
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
import random
import uuid
import datetime
from gradio_client import Client

# Initialize Gradio Client
client = Client("srinukethanaboina/SRUNU")

def select_random_name():
    names = ['Clara', 'Lily']
    return random.choice(names)

# Load environment variables
load_dotenv()

# Configure the Llama index settings
Settings.llm = HuggingFaceInferenceAPI(
    model_name="meta-llama/Meta-Llama-3-8B-Instruct",
    tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct",
    context_window=3000,
    token=os.getenv("HF_TOKEN"),
    max_new_tokens=512,
    generate_kwargs={"temperature": 0.1},
)
Settings.embed_model = HuggingFaceEmbedding(
    model_name="BAAI/bge-small-en-v1.5"
)

# Define the directory for persistent storage and data
PERSIST_DIR = "db"
PDF_DIRECTORY = 'data'  # Directory containing PDFs

# Ensure directories exist
os.makedirs(PDF_DIRECTORY, exist_ok=True)
os.makedirs(PERSIST_DIR, exist_ok=True)

# Variable to store current chat conversation
current_chat_history = []

def data_ingestion_from_directory():
    # Use SimpleDirectoryReader on the directory containing the PDF files
    documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()
    storage_context = StorageContext.from_defaults()
    index = VectorStoreIndex.from_documents(documents)
    index.storage_context.persist(persist_dir=PERSIST_DIR)

def handle_query(query):
    chat_text_qa_msgs = [
        (
            "user",
            """
            You are the Clara Redfernstech chatbot. Your goal is to provide accurate, professional, and helpful answers to user queries based on the company's data. Always ensure your responses are clear and concise. give response within 10-15 words only       
            {context_str}
            Question:
            {query_str}
            """
        )
    ]
    text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)

    # Load index from storage
    storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
    index = load_index_from_storage(storage_context)

    # Use chat history to enhance response
    context_str = ""
    for past_query, response in reversed(current_chat_history):
        if past_query.strip():
            context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n"

    query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str)
    answer = query_engine.query(query)

    if hasattr(answer, 'response'):
        response = answer.response
    elif isinstance(answer, dict) and 'response' in answer:
        response = answer['response']
    else:
        response = "Sorry, I couldn't find an answer."

    # Update current chat history
    current_chat_history.append((query, response))

    return response

# Example usage: Process PDF ingestion from directory
print("Processing PDF ingestion from directory:", PDF_DIRECTORY)
data_ingestion_from_directory()

def predict(message, req):
    logo_html = '''
    <div class="circle-logo">
      <img src="https://rb.gy/8r06eg" alt="FernAi">
    </div>
    '''
    # Use the gradio_client API to process the chat history and IP address
    response = client.predict(
        ip_address=req.client.host,  # Extract IP address from request
        chat_history=message,
        api_name="/predict"
    )
    response_with_logo = f'<div class="response-with-logo">{logo_html}<div class="response-text">{response}</div></div>'
    return response_with_logo

# Define your Gradio chat interface function (replace with your actual logic)
def chat_interface(message, history, request: gr.Request):
    try:
        # Process the user message and generate a response
        response = predict(message, request)

        # Capture the message data
        message_data = {
            "sender": "user",
            "message": message,
            "response": response,
            "timestamp": datetime.datetime.now().isoformat()  # Use a library like datetime
        }

        # Return the bot response
        return response
    except Exception as e:
        return str(e)

# Custom CSS for styling
css = '''
  .circle-logo {
  display: inline-block;
  width: 40px;
  height: 40px;
  border-radius: 50%;
  overflow: hidden;
  margin-right: 10px;
  vertical-align: middle;
}
.circle-logo img {
  width: 100%;
  height: 100%;
  object-fit: cover;
}
.response-with-logo {
  display: flex;
  align-items: center;
  margin-bottom: 10px;
}
footer {
    display: none !important;
    background-color: #F8D7DA;
  }
.svelte-1ed2p3z p {
  font-size: 24px;
  font-weight: bold;
  line-height: 1.2;
  color: #111;
  margin: 20px 0;
}
label.svelte-1b6s6s {display: none}
div.svelte-rk35yg {display: none;}
div.progress-text.svelte-z7cif2.meta-text {display: none;}
'''

# Launch the Gradio interface
gr.ChatInterface(chat_interface,
                 css=css,
                 description="Clara",
                 clear_btn=None, undo_btn=None, retry_btn=None,
                 ).launch()