voicechatbot / app.py
redfernstech's picture
Update app.py
14a964e verified
import os
from gtts import gTTS
import time
from fastapi import FastAPI, Request
from fastapi.responses import HTMLResponse
from fastapi.responses import FileResponse
from fastapi.staticfiles import StaticFiles
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from pydantic import BaseModel
from fastapi.responses import JSONResponse
import uuid # for generating unique IDs
import datetime
from fastapi.middleware.cors import CORSMiddleware
from fastapi.templating import Jinja2Templates
from huggingface_hub import InferenceClient
import json
import re
from deep_translator import GoogleTranslator
from dotenv import load_dotenv
import random
import string
load_dotenv()
# Define Pydantic model for incoming request body
class MessageRequest(BaseModel):
message: str
language: str
repo_id = "meta-llama/Meta-Llama-3-8B-Instruct"
llm_client = InferenceClient(
model=repo_id,
token=os.getenv("HF_TOKEN"),
)
os.environ["HF_TOKEN"] = os.getenv("HF_TOKEN")
app = FastAPI()
@app.middleware("http")
async def add_security_headers(request: Request, call_next):
response = await call_next(request)
response.headers["Content-Security-Policy"] = "frame-ancestors *; frame-src *; object-src *;"
response.headers["X-Frame-Options"] = "ALLOWALL"
return response
# Allow CORS requests from any domain
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.get("/favicon.ico")
async def favicon():
return HTMLResponse("") # or serve a real favicon if you have one
app.mount("/static", StaticFiles(directory="static"), name="static")
templates = Jinja2Templates(directory="static")
# Configure Llama index settings
Settings.llm = HuggingFaceInferenceAPI(
model_name="meta-llama/Meta-Llama-3-8B-Instruct",
tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct",
context_window=3000,
token=os.getenv("HF_TOKEN"),
max_new_tokens=512,
generate_kwargs={"temperature": 0.1},
)
Settings.embed_model = HuggingFaceEmbedding(
model_name="BAAI/bge-small-en-v1.5"
)
PERSIST_DIR = "db"
PDF_DIRECTORY = 'data'
# Ensure directories exist
os.makedirs(PDF_DIRECTORY, exist_ok=True)
os.makedirs(PERSIST_DIR, exist_ok=True)
chat_history = []
current_chat_history = []
def data_ingestion_from_directory():
documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()
storage_context = StorageContext.from_defaults()
index = VectorStoreIndex.from_documents(documents)
index.storage_context.persist(persist_dir=PERSIST_DIR)
def generate_unique_filename(extension="txt"):
# Current timestamp
timestamp = time.strftime("%Y%m%d%H%M%S")
# Generate a random string of 6 characters
random_str = ''.join(random.choices(string.ascii_letters + string.digits, k=6))
# Combine timestamp and random string
unique_filename = f"{timestamp}_{random_str}.{extension}"
return unique_filename
def initialize():
start_time = time.time()
data_ingestion_from_directory() # Process PDF ingestion at startup
print(f"Data ingestion time: {time.time() - start_time} seconds")
def split_name(full_name):
# Split the name by spaces
words = full_name.strip().split()
# Logic for determining first name and last name
if len(words) == 1:
first_name = ''
last_name = words[0]
elif len(words) == 2:
first_name = words[0]
last_name = words[1]
else:
first_name = words[0]
last_name = ' '.join(words[1:])
return first_name, last_name
initialize() # Run initialization tasks
#You are the ITC GrandChola Hotel voice chatbot and your name is hotel helper.
# Your goal is to provide accurate, professional, and helpful answers to user queries
# based on the Taj hotel data. Always ensure your responses are clear and concise.
# Give response within 10-15 words only. If you don't know the answer,
# you can say 'I don't know'. If you need more information, you can ask the user for clarification.
# You can also ask the user if they need help with anything else. Remember to be polite and professional at all times. If you are ready to start, you can say 'I am ready'. If you need to take a break, you can say 'I need a break'.
# If you need to end the conversation, you can say 'Goodbye'.
def handle_query(query):
chat_text_qa_msgs = [
(
"user",
"""
You are the Hotel voice chatbot and your name is hotel helper. Your goal is to provide accurate, professional, and helpful answers to user queries based on the hotel's data. Always ensure your responses are clear and concise. Give response within 10-15 words only. You need to give an answer in the same language used by the user.
{context_str}
Question:
{query_str}
"""
)
]
text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
index = load_index_from_storage(storage_context)
context_str = ""
for past_query, response in reversed(current_chat_history):
if past_query.strip():
context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n"
query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str)
print(query)
answer = query_engine.query(query)
if hasattr(answer, 'response'):
response = answer.response
elif isinstance(answer, dict) and 'response' in answer:
response = answer['response']
else:
response = "Sorry, I couldn't find an answer."
current_chat_history.append((query, response))
return response
def generate_unique_audio_filename():
return f"audio/response_{uuid.uuid4().hex}.mp3"
@app.get("/ch/{id}", response_class=HTMLResponse)
async def load_chat(request: Request, id: str):
return templates.TemplateResponse("index.html", {"request": request, "user_id": id})
@app.get("/voice/{id}", response_class=HTMLResponse)
async def load_chat(request: Request, id: str):
return templates.TemplateResponse("voice.html", {"request": request, "user_id": id})
@app.get("/audio/{filename}")
async def get_audio(filename: str):
audio_path = os.path.join(os.getcwd(), filename) # Ensure correct file path
if os.path.exists(audio_path):
return FileResponse(audio_path)
else:
raise HTTPException(status_code=404, detail="Audio file not found.")
@app.post("/chat/")
async def chat(request: MessageRequest):
message = request.message # Access the message from the request body
language = request.language
language_code = request.language.split('-')[0]
translator1 = GoogleTranslator(source='auto', target='en')
# Translation
message = translator1.translate(message)
response = handle_query(message) # Process the message
response1 = response
try:
translator = GoogleTranslator(source='en', target=language_code) # Translate to Tamil
response1 = translator.translate(response)
#response1 = translator.translate(response, dest=language_code).text
print(response1)
except Exception as e:
# Handle translation errors
print(f"Translation error: {e}")
translated_response = "Sorry, I couldn't translate the response."
print(f"Selected Language: {language}")
message_data = {
"sender": "User",
"message": message,
"response": response,
"timestamp": datetime.datetime.now().isoformat()
}
chat_history.append(message_data)
tts = gTTS(text=response1, lang=language_code)
audio_path = generate_unique_filename("mp3")
tts.save(audio_path)
return {"response": response1,
"audioUrl": f"audio/{audio_path}"}
@app.get("/")
def read_root(request: Request):
return templates.TemplateResponse("home.html", {"request": request})