Spaces:
Sleeping
Sleeping
import os | |
from gtts import gTTS | |
import time | |
from fastapi import FastAPI, Request | |
from fastapi.responses import HTMLResponse | |
from fastapi.responses import FileResponse | |
from fastapi.staticfiles import StaticFiles | |
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings | |
from llama_index.llms.huggingface import HuggingFaceInferenceAPI | |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding | |
from pydantic import BaseModel | |
from fastapi.responses import JSONResponse | |
import uuid # for generating unique IDs | |
import datetime | |
from fastapi.middleware.cors import CORSMiddleware | |
from fastapi.templating import Jinja2Templates | |
from huggingface_hub import InferenceClient | |
import json | |
import re | |
from deep_translator import GoogleTranslator | |
from dotenv import load_dotenv | |
import random | |
import string | |
load_dotenv() | |
# Define Pydantic model for incoming request body | |
class MessageRequest(BaseModel): | |
message: str | |
language: str | |
repo_id = "meta-llama/Meta-Llama-3-8B-Instruct" | |
llm_client = InferenceClient( | |
model=repo_id, | |
token=os.getenv("HF_TOKEN"), | |
) | |
os.environ["HF_TOKEN"] = os.getenv("HF_TOKEN") | |
app = FastAPI() | |
async def add_security_headers(request: Request, call_next): | |
response = await call_next(request) | |
response.headers["Content-Security-Policy"] = "frame-ancestors *; frame-src *; object-src *;" | |
response.headers["X-Frame-Options"] = "ALLOWALL" | |
return response | |
# Allow CORS requests from any domain | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=["*"], | |
allow_credentials=True, | |
allow_methods=["*"], | |
allow_headers=["*"], | |
) | |
async def favicon(): | |
return HTMLResponse("") # or serve a real favicon if you have one | |
app.mount("/static", StaticFiles(directory="static"), name="static") | |
templates = Jinja2Templates(directory="static") | |
# Configure Llama index settings | |
Settings.llm = HuggingFaceInferenceAPI( | |
model_name="meta-llama/Meta-Llama-3-8B-Instruct", | |
tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct", | |
context_window=3000, | |
token=os.getenv("HF_TOKEN"), | |
max_new_tokens=512, | |
generate_kwargs={"temperature": 0.1}, | |
) | |
Settings.embed_model = HuggingFaceEmbedding( | |
model_name="BAAI/bge-small-en-v1.5" | |
) | |
PERSIST_DIR = "db" | |
PDF_DIRECTORY = 'data' | |
# Ensure directories exist | |
os.makedirs(PDF_DIRECTORY, exist_ok=True) | |
os.makedirs(PERSIST_DIR, exist_ok=True) | |
chat_history = [] | |
current_chat_history = [] | |
def data_ingestion_from_directory(): | |
documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data() | |
storage_context = StorageContext.from_defaults() | |
index = VectorStoreIndex.from_documents(documents) | |
index.storage_context.persist(persist_dir=PERSIST_DIR) | |
def generate_unique_filename(extension="txt"): | |
# Current timestamp | |
timestamp = time.strftime("%Y%m%d%H%M%S") | |
# Generate a random string of 6 characters | |
random_str = ''.join(random.choices(string.ascii_letters + string.digits, k=6)) | |
# Combine timestamp and random string | |
unique_filename = f"{timestamp}_{random_str}.{extension}" | |
return unique_filename | |
def initialize(): | |
start_time = time.time() | |
data_ingestion_from_directory() # Process PDF ingestion at startup | |
print(f"Data ingestion time: {time.time() - start_time} seconds") | |
def split_name(full_name): | |
# Split the name by spaces | |
words = full_name.strip().split() | |
# Logic for determining first name and last name | |
if len(words) == 1: | |
first_name = '' | |
last_name = words[0] | |
elif len(words) == 2: | |
first_name = words[0] | |
last_name = words[1] | |
else: | |
first_name = words[0] | |
last_name = ' '.join(words[1:]) | |
return first_name, last_name | |
initialize() # Run initialization tasks | |
#You are the ITC GrandChola Hotel voice chatbot and your name is hotel helper. | |
# Your goal is to provide accurate, professional, and helpful answers to user queries | |
# based on the Taj hotel data. Always ensure your responses are clear and concise. | |
# Give response within 10-15 words only. If you don't know the answer, | |
# you can say 'I don't know'. If you need more information, you can ask the user for clarification. | |
# You can also ask the user if they need help with anything else. Remember to be polite and professional at all times. If you are ready to start, you can say 'I am ready'. If you need to take a break, you can say 'I need a break'. | |
# If you need to end the conversation, you can say 'Goodbye'. | |
def handle_query(query): | |
chat_text_qa_msgs = [ | |
( | |
"user", | |
""" | |
You are the Hotel voice chatbot and your name is hotel helper. Your goal is to provide accurate, professional, and helpful answers to user queries based on the hotel's data. Always ensure your responses are clear and concise. Give response within 10-15 words only. You need to give an answer in the same language used by the user. | |
{context_str} | |
Question: | |
{query_str} | |
""" | |
) | |
] | |
text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs) | |
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR) | |
index = load_index_from_storage(storage_context) | |
context_str = "" | |
for past_query, response in reversed(current_chat_history): | |
if past_query.strip(): | |
context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n" | |
query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str) | |
print(query) | |
answer = query_engine.query(query) | |
if hasattr(answer, 'response'): | |
response = answer.response | |
elif isinstance(answer, dict) and 'response' in answer: | |
response = answer['response'] | |
else: | |
response = "Sorry, I couldn't find an answer." | |
current_chat_history.append((query, response)) | |
return response | |
def generate_unique_audio_filename(): | |
return f"audio/response_{uuid.uuid4().hex}.mp3" | |
async def load_chat(request: Request, id: str): | |
return templates.TemplateResponse("index.html", {"request": request, "user_id": id}) | |
async def load_chat(request: Request, id: str): | |
return templates.TemplateResponse("voice.html", {"request": request, "user_id": id}) | |
async def get_audio(filename: str): | |
audio_path = os.path.join(os.getcwd(), filename) # Ensure correct file path | |
if os.path.exists(audio_path): | |
return FileResponse(audio_path) | |
else: | |
raise HTTPException(status_code=404, detail="Audio file not found.") | |
async def chat(request: MessageRequest): | |
message = request.message # Access the message from the request body | |
language = request.language | |
language_code = request.language.split('-')[0] | |
translator1 = GoogleTranslator(source='auto', target='en') | |
# Translation | |
message = translator1.translate(message) | |
response = handle_query(message) # Process the message | |
response1 = response | |
try: | |
translator = GoogleTranslator(source='en', target=language_code) # Translate to Tamil | |
response1 = translator.translate(response) | |
#response1 = translator.translate(response, dest=language_code).text | |
print(response1) | |
except Exception as e: | |
# Handle translation errors | |
print(f"Translation error: {e}") | |
translated_response = "Sorry, I couldn't translate the response." | |
print(f"Selected Language: {language}") | |
message_data = { | |
"sender": "User", | |
"message": message, | |
"response": response, | |
"timestamp": datetime.datetime.now().isoformat() | |
} | |
chat_history.append(message_data) | |
tts = gTTS(text=response1, lang=language_code) | |
audio_path = generate_unique_filename("mp3") | |
tts.save(audio_path) | |
return {"response": response1, | |
"audioUrl": f"audio/{audio_path}"} | |
def read_root(request: Request): | |
return templates.TemplateResponse("home.html", {"request": request}) | |