File size: 6,555 Bytes
6079c6e
d2c3421
b35805b
9a97411
 
6079c6e
9a97411
 
6079c6e
5f89d23
 
 
9a97411
 
f98d1cf
9a97411
 
6079c6e
9a97411
29cb53e
f03ab9c
29cb53e
9a97411
6079c6e
9a97411
 
35446dd
9a97411
 
 
6079c6e
9a97411
 
 
 
 
 
 
 
 
 
 
 
 
 
f98d1cf
b78d721
 
f804d88
9a97411
 
 
 
 
ae66ad0
9a97411
f03ab9c
 
 
 
9a97411
f98d1cf
f03ab9c
 
 
 
 
 
 
9a97411
f03ab9c
9a97411
5f89d23
 
 
 
 
 
 
9a97411
f804d88
 
 
 
 
f98d1cf
9a97411
f98d1cf
 
9a97411
b35805b
9a97411
f98d1cf
d2c3421
f804d88
d2c3421
9a97411
d2c3421
 
 
 
f804d88
d2c3421
 
9a97411
d2c3421
 
f98d1cf
 
 
 
 
 
 
9a97411
f98d1cf
 
9a97411
f98d1cf
 
 
98a100b
f98d1cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0a81d3
f03ab9c
f98d1cf
9a97411
f98d1cf
 
 
9a97411
f98d1cf
98a100b
f804d88
f03ab9c
 
 
 
dd72b73
1ab91ee
fd36e75
7fd2cf6
9a97411
 
f804d88
9a97411
f03ab9c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import gradio as gr
import os
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread

# Set an environment variable
HF_TOKEN = os.environ.get("HF_TOKEN", None)

SYSTEM_PROMPT = "You are an AI Healthcare assistant. Provide clear, empathetic, and accurate information about healthcare topics. Do not state "It's always best to consult with a healthcare provider", as you are simulating the role of a healthcare provider. A disclaimer has been placed elsewhere for the user that informs them to be mindful about your replies, so your job is to provide them with as much information as possible and let them make decisions themselves."


DESCRIPTION = '''
<div>
<h1 style="text-align: center;">A.I. Healthcare</h1>
</div>
'''

LICENSE = """
<p>
This Health Assistant is designed to provide helpful healthcare information; however, it may make mistakes and is not designed to replace professional medical care. It is not intended to diagnose any condition or disease. Always consult with a qualified healthcare provider for any medical concerns.\n\nI hereby confirm that I am at least 18 years of age (or accompanied by a legal guardian who is at least 18 years old), understand that the information provided by this service is for informational purposes only and is not intended to diagnose or treat any medical condition, and acknowledge that I am solely responsible for verifying any information provided.
</p>
"""

PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
   <h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">A.I. Healthcare</h1>
   <p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Ask me anything...</p>
</div>
"""

css = """
h1 {
  text-align: center;
  display: block;
}

#duplicate-button {
  margin: auto;
  color: white;
  background: #1565c0;
  border-radius: 100vh;
}
"""

# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("reedmayhew/HealthCare-Reasoning-Assistant-Llama-3.1-8B-HF", device_map="cuda")
model = AutoModelForCausalLM.from_pretrained("reedmayhew/HealthCare-Reasoning-Assistant-Llama-3.1-8B-HF", device_map="cuda")

terminators = [
    tokenizer.eos_token_id,
    tokenizer.convert_tokens_to_ids("<|eot_id|>")
]

@spaces.GPU(duration=60)
def chat_llama3_8b(message: str, 
                    history: list, 
                    temperature: float, 
                    max_new_tokens: int
                   ) -> str:
    """
    Generate a streaming response using the llama3-8b model.
    Args:
        message (str): The input message.
        history (list): The conversation history used by ChatInterface.
        temperature (float): The temperature for generating the response.
        max_new_tokens (int): The maximum number of new tokens to generate.
    Returns:
        str: The generated response.
    """
    
    conversation = []

    # Add system prompt only if this is a new conversation (i.e., history is empty)
    if not history:
        conversation.append({"role": "system", "content": SYSTEM_PROMPT})
            conversation.append({"role": "user", "assistant": "Understood! I will act as the user's healthcare provider, not hesitate with providing detailed responses, or refer them to another healthcare provider unless they ask for one, as you have already given them a disclaimer."})

    
    for user, assistant in history:
        conversation.extend([
            {"role": "user", "content": user}, 
            {"role": "assistant", "content": assistant}
        ])
    
    # Ensure the model starts with "<think>"
    conversation.append({"role": "user", "content": message})
    conversation.append({"role": "assistant", "content": "<think> "})  # Force <think> at start

    input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device)
    
    streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)

    generate_kwargs = dict(
        input_ids=input_ids,
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        temperature=temperature,
        eos_token_id=terminators,
    )
    
    if temperature == 0:
        generate_kwargs['do_sample'] = False
        
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    outputs = []
    buffer = ""
    think_detected = False
    thinking_message_sent = False
    full_response = ""  # Store the full assistant response

    for text in streamer:
        buffer += text
        full_response += text  # Store raw assistant response (includes <think>)

        # Send the "thinking" message once text starts generating
        if not thinking_message_sent:
            thinking_message_sent = True
            yield "A.I. Healthcare is Thinking! Please wait, your response will output shortly...\n\n"

        # Wait until </think> is detected before streaming output
        if not think_detected:
            if "</think>" in buffer:
                think_detected = True
                buffer = buffer.split("</think>", 1)[1]  # Remove <think> section
        else:
            outputs.append(text)
            yield "".join(outputs)

    # Store the full response (including <think>) in history, but only show the user the cleaned response
    history.append((message, full_response))  # Full assistant response saved for context

# Gradio block
chatbot = gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface')

with gr.Blocks(fill_height=True, css=css) as demo:
    
    gr.Markdown(DESCRIPTION)
    gr.ChatInterface(
        fn=chat_llama3_8b,
        chatbot=chatbot,
        fill_height=True,
        additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
        additional_inputs=[
            gr.Slider(minimum=0.6, maximum=0.6, step=0.1, value=0.6, label="Temperature", render=False),
            gr.Slider(minimum=1024, maximum=4096, step=128, value=2048, label="Max new tokens", render=False),
        ],
        examples=[
            ['What is PrEP, and do I need it?'],
            ['What medications help manage being undetectable with HIV?'],
            ['How do I know if an abortion is the right option?'],
            ['How can I access birth-control in states where it is regulated?'],
        ],
        cache_examples=False,
    )
    
    gr.Markdown(LICENSE)

if __name__ == "__main__":
    demo.launch()