Spaces:
Running
Running
import gradio as gr | |
import os | |
import spaces | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
from threading import Thread | |
# Set an environment variable | |
HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
DESCRIPTION = ''' | |
<div> | |
<h1 style="text-align: center;">DeepSeek-R1-Zero</h1> | |
</div> | |
''' | |
LICENSE = """ | |
<p/> | |
--- | |
""" | |
PLACEHOLDER = """ | |
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;"> | |
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">DeepSeek R1</h1> | |
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Ask me anything...</p> | |
</div> | |
""" | |
css = """ | |
h1 { | |
text-align: center; | |
display: block; | |
} | |
#duplicate-button { | |
margin: auto; | |
color: white; | |
background: #1565c0; | |
border-radius: 100vh; | |
} | |
""" | |
# Load the tokenizer and model | |
tokenizer = AutoTokenizer.from_pretrained("reedmayhew/DeepSeek-R1-Refined-Llama-3.1-8B-hf") | |
model = AutoModelForCausalLM.from_pretrained("reedmayhew/DeepSeek-R1-Refined-Llama-3.1-8B-hf", device_map="auto") | |
terminators = [ | |
tokenizer.eos_token_id, | |
tokenizer.convert_tokens_to_ids("<|eot_id|>") | |
] | |
def chat_llama3_8b(message: str, | |
history: list, | |
temperature: float, | |
max_new_tokens: int | |
) -> str: | |
""" | |
Generate a streaming response using the llama3-8b model. | |
Args: | |
message (str): The input message. | |
history (list): The conversation history used by ChatInterface. | |
temperature (float): The temperature for generating the response. | |
max_new_tokens (int): The maximum number of new tokens to generate. | |
Returns: | |
str: The generated response. | |
""" | |
conversation = [] | |
for user, assistant in history: | |
conversation.extend([ | |
{"role": "user", "content": user}, | |
{"role": "assistant", "content": assistant} | |
]) | |
# Ensure the model starts with "<think>" | |
conversation.append({"role": "user", "content": message}) | |
conversation.append({"role": "assistant", "content": "<think> "}) # Force <think> at start | |
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device) | |
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
input_ids=input_ids, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
temperature=temperature, | |
eos_token_id=terminators, | |
) | |
if temperature == 0: | |
generate_kwargs['do_sample'] = False | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
outputs = [] | |
buffer = "" | |
think_detected = False | |
thinking_message_sent = False | |
full_response = "" # Store the full assistant response | |
for text in streamer: | |
buffer += text | |
full_response += text # Store raw assistant response (includes <think>) | |
# Send the "thinking" message once text starts generating | |
if not thinking_message_sent: | |
thinking_message_sent = True | |
yield "DeepSeek R1 is Thinking...\n\n" | |
# Wait until </think> is detected before streaming output | |
if not think_detected: | |
if "</think>" in buffer: | |
think_detected = True | |
buffer = buffer.split("</think>", 1)[1] # Remove <think> section | |
else: | |
outputs.append(text) | |
yield "".join(outputs) | |
# Store the full response (including <think>) in history, but only show the user the cleaned response | |
history.append((message, full_response)) # Full assistant response saved for context | |
# Gradio block | |
chatbot = gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface') | |
with gr.Blocks(fill_height=True, css=css) as demo: | |
gr.Markdown(DESCRIPTION) | |
gr.ChatInterface( | |
fn=chat_llama3_8b, | |
chatbot=chatbot, | |
fill_height=True, | |
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False), | |
additional_inputs=[ | |
gr.Slider(minimum=0.6, maximum=0.6, step=0.1, value=0.6, label="Temperature", render=False), | |
gr.Slider(minimum=128, maximum=4096, step=64, value=1024, label="Max new tokens", render=False), | |
], | |
examples=[ | |
['How to setup a human base on Mars? Give short answer.'], | |
['Explain theory of relativity to me like I’m 8 years old.'], | |
['What is 9,000 * 9,000?'], | |
['Write a pun-filled happy birthday message to my friend Alex.'], | |
['Justify why a penguin might make a good king of the jungle.'] | |
], | |
cache_examples=False, | |
) | |
gr.Markdown(LICENSE) | |
if __name__ == "__main__": | |
demo.launch() |